EECS 336: Introduction to Algorithms	Lecture 16
P vs. NP (cont.)	INDEP-SET, CIRCUIT-SAT

Reading: 8.1-8.4
Last time:

- $\mathcal{N} \mathcal{P}$-completeness
- "notorious problem" NP.
- redutions from 3-SAT.

Today:

- INDEP-SET $\leq_{\mathcal{P}} 3$-SAT
- $\mathrm{NP} \leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}} 3$-SAT

Problem 1: Independent Set (INDEPSET)

input: $G=(V, E)$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- maximizing $|S|$

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.
output:
- "Yes" if assignment \mathbf{z} with $f(\mathbf{z})=$ T exists
- "No" otherwise.

Independent Set

Recall: INDEP-SET (decision problem)
input: $G=(V, E), k$
output: $S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq k$

Lemma: INDEP-SET is $\mathcal{N} \mathcal{P}$-hard.
Proof: (reduction from 3-SAT)
Step 1: convert 3-SAT instance f into INDEP-SET instance $\left(G, k_{\text {literal }} j\right.$ in clause i

- vertices $v_{i j}$ correspond to literals $l_{i j}$
- edges for:
- clause (in triangle)
"at most one vertex selected per clause"
- conflicted literals.
"vertices for conflicting literals cannot be selected"
- "vertex $v_{i j}$ is selected" \Rightarrow "literal $l_{i j}$ is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge$ $\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Step 2: construction is polynomial time. one vertex per literal.

Step 3: show construction correct.
(a) if f is satisfiable then G has indep. set size $\geq m$.

- f is sat
\Rightarrow exists \mathbf{z} so each clause is true.
- let S^{\prime} be nodes in G corresponding to true literals.
- if more than one node in S^{\prime} in same triangle drop all but one.
$\Rightarrow S$.
- $|S|=m$.
- for all $u, v \in S$,
- $u \& v$ not in same triangle.
- l_{u} and l_{v} both true
\Rightarrow must not conflict
\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in G.
- so S is independent.
(b) if G has indep. set S size $\geq m$ then f is satisfiable.
(a) construct assignment \mathbf{z} from S

For each z_{r}

- if nodes in S are labeled by z_{r} (but not \bar{z}_{r})
\Rightarrow set $z_{r}=1$
- if nodes in S are labeled by \bar{z}_{r} (but not z_{r})
\Rightarrow set $z_{r}=0$
- if no $v \in S$ is labeled z_{r} or \bar{z}_{r}
\Rightarrow set $z_{r}=1$ (or 0 , doesn't matter)

Note: no two nodes $u, v \in S$ labeled by both z_{r} or \bar{z}_{r}, if so, there is (u, v) edge so S would not be independent.
(b) $f(\mathbf{z})=T$:

- S has $|S| \geq m$
- can have at most one node from each triangle

$$
\begin{aligned}
& \Rightarrow \begin{array}{l}
\text { have exactly one from each } \\
\\
\text { triangle }
\end{array} \\
& \Rightarrow|S|=m
\end{aligned}
$$

- $v \in S$ means literal l_{v} is true.

$$
\begin{aligned}
& \Rightarrow \text { one true literal per clause } \\
& \Rightarrow f(\mathbf{z})=T
\end{aligned}
$$

Circuit Satisfiability

Example:

Problem 4: CIRCUIT-SAT
input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph $G=(V, E)$
- internal nodes labeled by logical gates:
"and", "or", or "not"
- leaves labeled by variables or constants

$$
T, F, z_{1}, \ldots, z_{n}
$$

- root r is output of circuit
output:
- "Yes" if exists \mathbf{z} with $Q(\mathbf{z})=T$
- "No" otherwise.

Lemma: CIRCUIT-SAT is $\mathcal{N} \mathcal{P}$-hard.
Proof: (reduce from NP)

- goal: convert NP instance ($V P, p, x$) to CIRCUIT-SAT instance Q
- $V P(\cdot, \cdot)$ polynomial time

$$
\Rightarrow \text { computer can run it in poly steps. }
$$

- each step of computer is circuit.
- output of one step is input to next step
- unroll $p(|x|)$ steps of computation

$$
\begin{aligned}
\Rightarrow & \exists \text { poly-size circuit } \quad Q^{\prime}(\mathbf{x}, \mathbf{c})= \\
& \operatorname{VP}(x, c)
\end{aligned}
$$

- hardcode $\mathbf{x}: Q(\mathbf{c})=Q^{\prime}(\mathbf{x}, \mathbf{c})$
- Conclusion: Q is sat iff exists c with $V P(x, c)=$ "verified".

3-SAT

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.
output:
- "Yes" if assignment \mathbf{z} with $f(\mathbf{z})=$ T exists
- "No" otherwise.

Problem 5: LE3-SAT

"like 3 -SAT but at most 3 literals per orclause"

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Recall: NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT
Plan: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}} 3$ SAT

Lemma: LE3-SAT $\leq_{\mathcal{P}} 3$-SAT
Step 1: convert LE3-SAT instance f^{\prime} into 3-SAT instance f

- $f \leftarrow f^{\prime}$
- add variables w_{1}, w_{2}
- add w_{i} to 1- and 2-clauses

$$
\begin{aligned}
& \left(l_{1}\right) \Rightarrow\left(l_{1} \vee w_{1} \vee w_{2}\right) . \\
& \left(l_{1} \vee l_{2}\right) \Rightarrow\left(l_{1} \vee l_{2} \vee w_{1}\right) .
\end{aligned}
$$

- ensure $w_{i}=0$ add variables y_{1}, y_{1} and clauses:

$$
\begin{aligned}
& \left(\bar{w}_{i} \vee y_{1} \vee y_{2}\right) \\
& \left(\bar{w}_{i} \vee \bar{y}_{1} \vee y_{2}\right)
\end{aligned}
$$

$$
\left(\bar{w}_{i} \vee y_{1} \vee \bar{y}_{2}\right)
$$

$$
\left(\bar{w}_{i} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
$$

Step 2: construction is polynomial time.
Step 3: f is sat iff f^{\prime} is sat.

- given satisfying assignment $\left(\bar{z}, w_{1}, w_{2}, y_{1}, y_{2}\right)$ to f,

$$
\Rightarrow w_{i}=F \text { by construction. }
$$

$$
\Rightarrow f\left(\bar{z}, F, F, y_{1}, y_{2}\right) \stackrel{\text { simplify }}{\Longrightarrow} f(\bar{z})
$$

$$
\Rightarrow f \text { is sat. }
$$

- given satisfying assignment \bar{z} to f^{\prime},
- $f\left(\bar{z}, w_{1}, w_{2}, y_{1}, y_{2}\right) \stackrel{\text { simplify }}{\Longrightarrow}$ "clauses with only w_{i} and y_{i} "
- set $w_{i}=F$ and $y_{i}=F$ (or anything) to satisfy.

QED

Example:

Proof: (reduce from CIRCUIT-SAT)
Step 1: convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_{v} for each vertex of Q.
- encode gates
- not: if v not gate with input from u

need $x_{v}=\bar{x}_{u}$

$$
\begin{aligned}
& x_{v} \backslash x_{u} \\
& 0
\end{aligned} \left\lvert\, \begin{array}{l|l|}
\\
\cline { 2 - 4 } & 0 \\
\hline & 1 \\
\cline { 2 - 3 } & 1 \\
\hline
\end{array}\right.
$$

- or: if v is or gate from u to w need $x_{v}=x_{u} \wedge x_{w}$

$x_{v} \backslash x_{u} x_{w}$	00	01	11	10
0	1	0	0	0
1	0	1	1	1

\Rightarrow add clauses $\left(\bar{x}_{v} \vee x_{u} \vee x_{w}\right) \wedge\left(x_{v} \vee\right.$ $\left.\bar{x}_{u}\right) \wedge\left(x_{v} \vee \bar{x}_{w}\right)$

- and: if v is and gate from u to w
\Rightarrow add clauses $\left(x_{v} \vee \bar{x}_{u} \bar{x}_{w}\right) \wedge\left(\bar{x}_{v} \vee\right.$ $\left.x_{u}\right) \wedge\left(\bar{x}_{v} \vee x_{w}\right)$.
- 0: if v is 0 leaf.
need $x_{v}=0$
\Rightarrow add clause $\left(\bar{x}_{v}\right)$ need $x_{v}=1$
- 1: if v is 1 leaf.
\Rightarrow add clause $\left(x_{v}\right)$
- literal: if v is literal z_{j}
\Rightarrow do nothing
- root: if v is root

need $x_{v}=1$

$$
\Rightarrow \text { add clause }\left(x_{v}\right) \text {. }
$$

Step 2: construction is polynomial time.

- at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., Q is sat iff f is sat.)

- f constrains variables v_{i} to "proper circuit outcomes".
- if exists \mathbf{z} s.t. $f(\mathbf{z})$ is T,
then can read \mathbf{x} from \mathbf{z} and \mathbf{z} encodes proper circuit outcome to make Q output T for this \mathbf{x}.
- if Q outputs T for some \mathbf{x}
then can map \mathbf{x} and values at nodes to variables \mathbf{z} such that $f(\mathbf{z})$ is true.

QED

Lemma: 3-SAT is in NP
Proof: Certificate is assignment z.
Theorem: 3-SAT is NP-complete.
Proof: from lemmas.
Note: 2 steps to NP-completeness

1. $X \in \mathcal{N} \mathcal{P}$
2. X is $\mathcal{N} \mathcal{P}$-hard (via reduction)

3 steps to reduction

1. construction
2. runtime of construction
3. correctness of construction (iff)
