
EECS 336: Introduction to Algorithms Lecture 16
P vs. NP (cont.) INDEP-SET, CIRCUIT-SAT

Reading: 8.1-8.4

Last time:

• NP-completeness

• “notorious problem” NP.

• redutions from 3-SAT.

Today:

• INDEP-SET ≤P 3-SAT

• NP ≤P CIRCUIT-SAT ≤P 3-SAT

Problem 1: Independent Set (INDEP-
SET)

input: G = (V,E)

output: S ⊂ V

• satisfying ∀v ∈ S, (u, v) 6∈ E

• maximizing |S|

Problem 4: 3-SAT

input: boolean formula f(z)

• in conjunctive normal form (CNF)

• three literals per or-clause

• or-clauses anded together.

output:

• “Yes” if assignment z with f(z) =
T exists

• “No” otherwise.

1

Independent Set

Recall: INDEP-SET (decision problem)

input: G = (V,E), k

output: S ⊂ V

• satisfying ∀v ∈ S, (u, v) 6∈ E

• |S| ≥ k

Lemma: INDEP-SET is NP-hard.

Proof: (reduction from 3-SAT)

Step 1: convert 3-SAT instance f into
INDEP-SET instance (G, k).

• vertices vij correspond to literals lij

literal j in clause i

• edges for:

• clause (in triangle)

“at most one vertex selected per
clause”

• conflicted literals.

“vertices for conflicting literals can-
not be selected”

• “vertex vij is selected” ⇒ “literal lij is
true”.

• “indep set of size m ⇔ “satisfying as-
signment”

Example: f(z1, z2, z3, z4) = (z1 ∨ z2 ∨ z3) ∧
(z̄2 ∨ z̄3 ∨ z̄4) ∧ (z̄1 ∨ z̄2 ∨ z4)

b
v12

b

v11

b

v13

b
v22

b

v21

b

v23

b
v32

b

v31

b

v33
︸ ︷︷ ︸

m clauses

Step 2: construction is polynomial time.

one vertex per literal.

Step 3: show construction correct.

(a) if f is satisfiable then G has indep. set
size ≥ m.

• f is sat

⇒ exists z so each clause is true.

• let S ′ be nodes in G corresponding
to true literals.

• if more than one node in S ′ in same
triangle drop all but one.

⇒ S.

• |S| = m.

• for all u, v ∈ S,

• u & v not in same triangle.

• lu and lv both true

⇒ must not conflict

⇒ no (lu, lv) edge in G.

• so S is independent.

(b) if G has indep. set S size ≥ m then f is
satisfiable.

(a) construct assignment z from S

For each zr

• if nodes in S are labeled by zr
(but not z̄r)

⇒ set zr = 1

• if nodes in S are labeled by z̄r
(but not zr)

⇒ set zr = 0

• if no v ∈ S is labeled zr or z̄r

⇒ set zr = 1 (or 0, doesn’t
matter)

2

Note: no two nodes u, v ∈ S labeled by
both zr or z̄r, if so, there is (u, v)
edge so S would not be indepen-
dent.

(b) f(z) = T :

• S has |S| ≥ m

• can have at most one node from
each triangle

⇒ have exactly one from each
triangle

⇒ |S| = m

• v ∈ S means literal lv is true.

⇒ one true literal per clause

⇒ f(z) = T .

QED

3

Circuit Satisfiability

Example:

output

∧

¬

∨

F

∧

∨

T z1

∧

z2 z3

Problem 4: CIRCUIT-SAT

input: boolean circuit Q(z)

• directed acyclic graph G = (V,E)

• internal nodes labeled by logical
gates:

“and”, “or”, or “not”

• leaves labeled by variables or con-
stants

T, F, z1, . . . , zn.

• root r is output of circuit

output:

• “Yes” if exists z with Q(z) = T

• “No” otherwise.

Lemma: CIRCUIT-SAT is NP-hard.

Proof: (reduce from NP)

• goal: convert NP instance (V P, p, x) to
CIRCUIT-SAT instance Q

• V P (·, ·) polynomial time

⇒ computer can run it in poly steps.

• each step of computer is circuit.

• output of one step is input to next step

• unroll p(|x|) steps of computation

⇒ ∃ poly-size circuit Q′(x, c) =
V P (x, c)

• hardcode x: Q(c) = Q′(x, c)

• Conclusion: Q is sat iff exists c with
V P (x, c) = “verified”.

QED

4

3-SAT

Problem 4: 3-SAT

input: boolean formula f(z)

• in conjunctive normal form (CNF)

• three literals per or-clause

• or-clauses anded together.

output:

• “Yes” if assignment z with f(z) =
T exists

• “No” otherwise.

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-
clause”

Note: ≤P is transitive: if Y ≤P X and
X ≤P Z then Y ≤P Z.

Recall: NP ≤P CIRCUIT-SAT

Plan: CIRCUIT-SAT ≤P LE3-SAT ≤P 3-
SAT

Lemma: LE3-SAT ≤P 3-SAT

Step 1: convert LE3-SAT instance f ′ into
3-SAT instance f

• f ← f ′

• add variables w1, w2

• add wi to 1- and 2-clauses

(l1)⇒ (l1 ∨ w1 ∨ w2).

(l1 ∨ l2)⇒ (l1 ∨ l2 ∨ w1).

• ensure wi = 0 add variables y1, y1 and
clauses:

(w̄i ∨ y1 ∨ y2)

(w̄i ∨ ȳ1 ∨ y2)

(w̄i ∨ y1 ∨ ȳ2)

(w̄i ∨ ȳ1 ∨ ȳ2)

Step 2: construction is polynomial time.

Step 3: f is sat iff f ′ is sat.

• given satisfying assignment
(z̄, w1, w2, y1, y2) to f ,

⇒ wi = F by construction.

⇒ f(z̄, F, F, y1, y2)
simplify
=⇒ f(z̄)

⇒ f is sat.

• given satisfying assignment z̄ to f ′,

• f(z̄, w1, w2, y1, y2)
simplify
=⇒ “clauses

with only wi and yi”

• set wi = F and yi = F (or any-
thing) to satisfy. QED

5

Example:

output

∨
v1

¬
v2

∨
v4

F

v6
T

v7

∧
v3

¬
v5

x1

v8

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance Q

into 3-SAT instance f

• variables xv for each vertex of Q.

• encode gates

• not: if v not gate with input from
u

v ¬

xv

u

xu

need xv = x̄u

xv \ xu 0 1
0 0 1
1 1 0

⇒ add clauses (xv∨xu)∧(x̄v∨ x̄u)

• or: if v is or gate from u to w

need xv = xu ∧ xw

v ∨

xv

u

xu

w

xw

xv \ xuxw 00 01 11 10
0 1 0 0 0
1 0 1 1 1

⇒ add clauses (x̄v∨xu∨xw)∧(xv∨
x̄u) ∧ (xv ∨ x̄w)

• and: if v is and gate from u to w

⇒ add clauses (xv ∨ x̄ux̄w)∧ (x̄v ∨
xu) ∧ (x̄v ∨ xw).

• 0: if v is 0 leaf.

need xv = 0

⇒ add clause (x̄v)

need xv = 1

• 1: if v is 1 leaf.

⇒ add clause (xv)

• literal: if v is literal zj

⇒ do nothing

• root: if v is root

output

v

xv

need xv = 1

6

⇒ add clause (xv).

Step 2: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., Q is
sat iff f is sat.)

• f constrains variables vi to “proper cir-
cuit outcomes”.

• if exists z s.t. f(z) is T ,

then can read x from z and z encodes
proper circuit outcome to makeQ output
T for this x.

• if Q outputs T for some x

then can map x and values at nodes to
variables z such that f(z) is true.

QED

Lemma: 3-SAT is in NP

Proof: Certificate is assignment z.

Theorem: 3-SAT is NP-complete.

Proof: from lemmas.

Note: 2 steps to NP-completeness

1. X ∈ NP

2. X is NP-hard (via reduction)

3 steps to reduction

1. construction

2. runtime of construction

3. correctness of construction (iff)

7

