P vs. NP (cont.)

EECS 336: Introduction to Algorithms Lecture 16

INDEP-SET, CIRCUIT-SAT

Reading: 8.1-8.4
Last time:
e N'P-completeness
e “notorious problem” NP.
e redutions from 3-SAT.
Today:
e INDEP-SET <p 3-SAT
e NP <p CIRCUIT-SAT <p 3-SAT

Problem 1: Independent Set (INDEP-
SET)

input: G = (V, E)
output: ScCV
o satisfying Vv € S, (u,v) ¢ E

e maximizing |5/

Problem 4: 3-SAT

input: boolean formula f(z)

e in conjunctive normal form (CNF)

e three literals per or-clause

e or-clauses anded together.

e “Yes” if assignment z with f(z) =
T exists

e “No” otherwise.



Independent Set (a) if f is satisfiable then G has indep. set
size > m.
Recall: INDEP-SET (decision problem)

e fissat
input: G = (V, E), k

= exists z so each clause is true.

output: S CV
o satisfying Vo € S, (u,0) & E e let S’ bg nodes in G corresponding
to true literals.
o |S| >k

e if more than one node in S’ in same

Lemma: INDEP-SET is NP-hard. triangle drop all but one.

Proof: (reduction from 3-SAT)

= 5.

Step 1: convert 3-SAT instance f into
INDEP-SET instance (G, Altoral 7 in clause i o [S|=m.

e vertices v;; correspond to literals /;; o for all u,v € 5,

e edges for: e u & v not in same triangle.

e clause (in triangle) e 1, and I, both true
at m,f)St one vertex selected per — must not conflict
clause

e conflicted literals. = 1o (ly,[,) edge in G.
“vertices for conflicting literals can- e 50 S is independent.

not be selected (b) if G has indep. set S size > m then f is

o ‘“vertex v;; is selected” = “literal [;; is satisfiable.

true”.
‘ ' o (a) construct assignment z from S
e “indep set of size m < “satisfying as-

signment” For each z,
Example: f(z1,29,23,24) = (21 V 22 V 23) A e if nodes in S are labeled by z,
(22 V 23 V 24) N (21 V 29 V 24) (bU_t not 27»)

= set z, =1

V12 V22 V32
e if nodes in S are labeled by Zz,.
(but not z,)
b V13 V21 V23 U3l U3

3

~ 4 = set 2z, =0
m clauses
Step 2: construction is polynomial time. e if no v € S is labeled 2z, or Z,
one vertex per literal. = set z, = 1 (or 0, doesn’t
Step 3: show construction correct. matter)



Note: no two nodes u,v € S labeled by
both z,. or Z,., if so, there is (u,v)
edge so S would not be indepen-
dent.

(b) f(z) =T:
e Shas|S|>m

e can have at most one node from
each triangle

= have exactly one from each
triangle

= |S|=m

e v € S means literal [, is true.
= one true literal per clause
= f(z)="T.

QED



Circuit Satisfiability = computer can run it in poly steps.
Example: e cach step of computer is circuit.
output e output of one step is input to next step

e unroll p(|z|) steps of computation

o = 3 poly-size circuit @'(x,¢) =
VP(z,c)

0 g ° e hardcode x: Q(c) = Q'(x,¢)
@ @ e @ @ e Conclusion: @ is sat iff exists ¢ with

VP(z,c) = “verified”.

Problem 4: CIRCUIT-SAT QED

input: boolean circuit Q(z)
e directed acyclic graph G = (V, E)

e internal nodes labeled by logical
gates:

((and”’ “OI‘”, or ((not”

e leaves labeled by variables or con-
stants

T F z1,...,2%,.
e root r is output of circuit
output:
e “Yes” if exists z with Q(z) =T
e “No” otherwise.
Lemma: CIRCUIT-SAT is N'P-hard.
Proof: (reduce from NP)

e goal: convert NP instance (V P, p,z) to
CIRCUIT-SAT instance Q)

e VP(-,-) polynomial time



3-SAT

Lemma: LE3-SAT <p 3-SAT

Step 1: convert LE3-SAT instance f’ into
Problem 4: 3-SAT 3-SAT instance f
input: boolean formula f(z) o fef
e add variables wq, wo

e in conjunctive normal form (CNF)

e three literals per or-clause °

e or-clauses anded together.

e “Yes” if assignment z with f(z) = °®

T exists

e “No” otherwise.

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-
clause”

Note: <p is transitive:
X Sp Z then Y Sp Z.

if Y <p X and

Recall: NP <p CIRCUIT-SAT

Plan:
SAT

CIRCUIT-SAT <p LE3-SAT <p 3-

Step 2:

add w; to 1- and 2-clauses
(ll) = (ll Vawy V wg).
(ll \ ZQ) = (ll Vi,V wl).

ensure w; = 0 add variables y;,y; and
clauses:

w; Vy1 Vyso
w; VY1 Vys

( )
( )
(Wi V y1 Vi)
(W V 41V )

construction is polynomial time.

Step 3: [ is sat iff f’ is sat.

given satisfying
(’27 Wy, W2, Y1, y2) to f7

assignment

= w; = F by construction.

_ simplif _
= f(Z7F7F7y17y2> :p>yf(z)

= f is sat.

e given satisfying assignment z to f’,

simplify

— clauses

i f(za w1, W2, Y1, y2)
with only w; and y;”

e set w; = F and y; = F (or any-
thing) to satisfy. QED



Example:

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance )
into 3-SAT instance f

e variables x, for each vertex of ().
e cncode gates

e not: if v not gate with input from
u

need z, = 7,

Ty \xy |01
0 01
1 110

= add clauses (z, Vx,) A (T, VTy,)
e or: if v is or gate from u to w

need x, = x, N\ Ty,

Ty \ Tyy [ 00 | 01 | 11 | 10
0 17070710
1 o111

= add clauses (T, Vx,V,)A(z,V
Ty) N (T V Ty)

e and: if v is and gate from u to w

= add clauses (z, V ZyTy) A (T, V
Ty) N (ZTy V Typ).

e 0: if v is O leaf.
need z, =0
= add clause (z,)
need z, = 1
e 1: if vis 1 leaf.
= add clause (z,)
e literal: if v is literal z;
= do nothing

e root: if v is root

output

Ty

need z, = 1



= add clause (z,).
Step 2: construction is polynomial time.
e at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., @ is
sat iff f is sat.)

e f constrains variables v; to “proper cir-
cuit outcomes”.

o if exists z s.t. f(z)is T,

then can read x from z and z encodes
proper circuit outcome to make @) output
T for this x.

e if () outputs 71" for some x

then can map x and values at nodes to
variables z such that f(z) is true.

QED

Lemma: 3-SAT is in NP
Proof: Certificate is assignment z.
Theorem: 3-SAT is NP-complete.
Proof: from lemmas.
Note: 2 steps to NP-completeness

1. X e NP

2. X is N'P-hard (via reduction)
3 steps to reduction

1. construction

2. runtime of construction

3. correctness of construction (iff)



