Reading: 8.4-8.5

Last time:

- tractability and intractability
- decision problems

Today:

- \mathcal{NP} -completeness
- "notorious problem" NP.
- redutions from 3-SAT.

Problem 1: Independent Set (INDEP-SET)

input: G = (V, E)

output: $S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- maximizing |S|

Problem 2: SAT

Problem 3: Traveling Salesman (TSP)

input:

• G = (V, E), complete graph.

• $c(\cdot) = \text{costs on edges.}$

output: cycle ${\cal C}$ that

- passes through all vertices exactly once.
- minimizes total cost $\sum_{e \in C} c(e)$.

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.

output:

- "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$ exists
- "No" otherwise.

Problem 5: Hamiltonian Cycle (HC)

input: G = (V, E) (directed)

output: cycle C to visit each vertex exactly once.

Note: since $X_d =_{\mathcal{P}} X$, we write "X" but we mean " X_d "

A notoriously hard problem

"one problem to solve them all"

Note: all example problem have short certificates that could easily verify "yes" instance.

Def: \mathcal{NP} is the class of problems that have short (polynomial sized) certificates that can easily (in polynomial time) verify "yes" instances.

Historical Note: \mathcal{NP} = non-deterministic **Fact:** NP is \mathcal{NP} -complete. polynomial time

"a nondeterministic algorithm could guess the certificate and then verify it in polynomial time"

Note: Not all problems are in \mathcal{NP} .

E.g., unsatisfiability.

Def:

- Problem X is in \mathcal{NP} if exists short easily-verifiable certificate.
- Problem X is \mathcal{NP} -hard if $\forall Y \in$ $\mathcal{NP}, Y \leq_{\mathcal{P}} X.$
- Problem X is \mathcal{NP} -complete if $X \in \mathcal{NP}$ and X is $\overline{\mathcal{NP}}$ -hard.

Lemma: INDEP-SET $\in \mathcal{NP}$.

Lemma: SAT $\in \mathcal{NP}$.

Lemma: $TSP \in \mathcal{NP}$.

Goal: show INDEP-SET, SAT, TSP are \mathcal{NP} -complete.

Notorious Problem: NP

input:

- decision problem verifier program VP.
- polynomial $p(\cdot)$.
- decision problem instance: x

output:

- "Yes" if exists certificate c such that VP(x,c) has "verified = true" at computational step p(|x|).
- "No" otherwise.

Note: Unknown whether $\mathcal{P} = \mathcal{NP}$.

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Plan:

- 1. NP $\leq_{\mathcal{P}} \cdots \leq_{\mathcal{P}} 3$ -SAT
- 2. 3-SAT $\leq_{\mathcal{P}}$ INDEP-SET
- 3. 3-SAT $\leq_{\mathcal{P}}$ HC $\leq_{\mathcal{P}}$ TSP

Problem: Hamiltonian Cycle

input: G = (V, E) (directed)

output: cycle C to visit each vertex exactly once.

Lemma: hamiltonian cycle is \mathcal{NP} -hard

Proof: (reduction from 3-SAT)

Step 1: construction

- turn 3-SAT formula f in to graph G with hamiltonian cycle iff f is satisfiable.
- idea: variable = isolated path, right-toleft = true, left-to-right = false.
- idea: clause is node, which needs to be hit by at most one literal being true.
- construction:
 - left-right path per variable.
 - splice in clause nodes.

Step 2: runtime.

Step 3: correctness.

\mathbf{TSP}

Lemma 0.1 *TSP is* \mathcal{NP} *-hard.*

Proof: reduction from Hamiltonian Cycle

- encode edges with cost 1
- encode non-edges with cost n.

 \Rightarrow exists HC iff TSP cost $\leq n$