
EECS 336: Introduction to Algorithms Lecture 15
P vs. NP (cont.) NP, 3-SAT, Hamiltonian Cycle

Reading: 8.4-8.5

Last time:

• tractability and intractability

• decision problems

Today:

• NP-completeness

• “notorious problem” NP.

• redutions from 3-SAT.

Problem 1: Independent Set (INDEP-
SET)

input: G = (V,E)

output: S ⊂ V

• satisfying ∀v ∈ S, (u, v) 6∈ E

• maximizing |S|

Problem 2: SAT

Problem 3: Traveling Salesman (TSP)

input:

• G = (V,E), complete graph.

• c(·) = costs on edges.

output: cycle C that

• passes through all vertices exactly
once.

• minimizes total cost
∑

e∈C
c(e).

Problem 4: 3-SAT

input: boolean formula f(z)

• in conjunctive normal form (CNF)

• three literals per or-clause

• or-clauses anded together.

output:

• “Yes” if assignment z with f(z) =
T exists

• “No” otherwise.

Problem 5: Hamiltonian Cycle (HC)

input: G = (V,E) (directed)

output: cycle C to visit each vertex exactly
once.

Note: since Xd =P X , we write “X” but we
mean “Xd”

1

A notoriously hard prob-

lem

“one problem to solve them all”

Note: all example problem have short
certificates that could easily verify “yes” in-
stance.

Def: NP is the class of problems that have
short (polynomial sized) certificates that can
easily (in polynomial time) verify “yes” in-
stances.

Historical Note: NP = non-deterministic
polynomial time

“a nondeterministic algorithm could guess
the certificate and then verify it in polyno-
mial time”

Note: Not all problems are in NP.

E.g., unsatisfiability.

Def:

• Problem X is in NP if exists short
easily-verifiable certificate.

• Problem X is NP-hard if ∀Y ∈
NP, Y ≤P X .

• Problem X is NP-complete if X ∈ NP
and X is NP-hard.

Lemma: INDEP-SET ∈ NP.

Lemma: SAT ∈ NP.

Lemma: TSP ∈ NP.

Goal: show INDEP-SET, SAT, TSP are
NP-complete.

Notorious Problem: NP

input:

• decision problem verifier program
V P .

• polynomial p(·).

• decision problem instance: x

output:

• “Yes” if exists certificate c such that
V P (x, c) has “verified = true” at
computational step p(|x|).

• “No” otherwise.

Fact: NP is NP-complete.

Note: Unknown whether P = NP.

Note: ≤P is transitive: if Y ≤P X and
X ≤P Z then Y ≤P Z.

Plan:

1. NP ≤P · · · ≤P 3-SAT

2. 3-SAT ≤P INDEP-SET

3. 3-SAT ≤P HC ≤P TSP

2

Problem: Hamiltonian Cycle

input: G = (V,E) (directed)

output: cycle C to visit each vertex exactly
once.

Lemma: hamiltonian cycle is NP-hard

Proof: (reduction from 3-SAT)

Step 1: construction

• turn 3-SAT formula f in to graph G with
hamiltonian cycle iff f is satisfiable.

• idea: variable = isolated path, right-to-
left = true, left-to-right = false.

• idea: clause is node, which needs to be
hit by at most one literal being true.

• construction:

• left-right path per variable.

• splice in clause nodes.

Step 2: runtime.

Step 3: correctness.

TSP

Lemma 0.1 TSP is NP-hard.

Proof: reduction from Hamiltonian Cycle

• encode edges with cost 1

• encode non-edges with cost n.

⇒ exists HC iff TSP cost ≤ n

3

