
EECS 336: Introduction to Algorithms Lecture 14
P vs. NP intractability, NP, decision problems

Reading: 8.0-8.3

Last time:

• max flow alg / ford-fulkerson

• duality: max flow = min cut

Today:

• tractibility and intractibility

• P and NP

• decision problems

• INDEP-SET, 3-SAT, TSP, NP,
CIRCUIT-SAT

1

Intractibility and NP-

completeness

“when is a problem intractable?”

Def: P is the class of problems that can be
solved in polynomial time.

X ∈ P iff

∃ polynomial p(·),

∃ alg A,

∀ instances x of X ,

⇒ A solves x and in time O(p(|x|))

Note: easy to show X ∈ P, just give A and
prove poly runtime.

Examples: network-flow, matching, interval
scheduling, etc.

Three Infamous Problems

Problem 1: Independent Set (INDEP-
SET)

input: G = (V,E)

output: S ⊂ V

• satisfying ∀v ∈ S, (u, v) 6∈ E

• maximizing |S|

Problem 2: Satisfiability (SAT)

input: boolean formula f(z)

e.g., f(z) = (z1∨ z̄2∨x3)∧(z2∨ z̄5∨
z6) ∧ · · ·

output:

• “Yes” if assignment z with f(z) =
T exists

e.g., z = (T, T, F, T, F, . . .)

• “No” otherwise.

Problem 3: Traveling Salesman (TSP)

input:

• G = (V,E), complete graph.

• c(·) = costs on edges.

output: cycle C that

• passes through all vertices exactly
once.

• minimizes total cost
∑

e∈C
c(e).

No polynomial time algorithm is known for
any of these problems!

Theory of Intractability

Goal: formal way to argue that no polyno-
mial time algorithm exists (or “unlikely to
exist”), i.e., X 6∈ P.

Challenge: must show that all algorithms
fail!

Idea: to show X is difficult, reduce notori-
ously hard problem Y to X , i.e., reduce from
Y .

Example: to show new problem X is hard,
e.g., reduce TSP to X , i.e., reduce from TSP.

2

Def: Y reduces to X in polynomial time (no-
tation: Y ≤P X if any instance of Y can be
solved in a polynomial number of computa-
tional steps and a polynomial number of calls
to black-box that solves instances of X .

Consequences of Y ≤P X :

1. if X can be solved in polynomial time
then so can Y .

Example: X = network-flow; Y =
bipartite matching.

2. if Y cannot be solved in polynomial time
then neither can X .

3

Decision Problems

Goal: show SAT, INDEP-SET, TSP equiv-
alently hard.

Challenge: SAT, INDEP-SET, TSP prob-
lem solutions are very different.

Idea: focus on decision version of problem.

Def: A decision problem asks “does a feasible
solution exist?”

Example: satisfiability.

Def: an optimization problem asks “what is
the min (or max) value of a feasible solution?”

Def: the decision problem Xd for optimiza-
tion problem X is has input (x,D) = “does
instance x of X have a feasible solution with
value at most (or at least) D?”

Examples:

INDEP-SETd: set S with |S| ≥ D

SATd: z such that f(z) = T .

TSPd: tour C with
∑

c∈C
c(e) ≤ D

Deciding is as hard as optimizing

Theorem: X ≤P Xd

Proof: (reduction via binary search)

• given

• instance x of X

• black-box A to solve Xd

• search(A,B) = find optimal value in
[A,B].

• D = (A+B)/2

• run A(x,D)

• if “yes”, search(A,D)

• if “no”, search(D,B)

Finding solution is as hard as de-
ciding

Example: satisfiability

1. if f is satisfiable ∃z s.t. f(z) = T

2. guess zn = T

3. let f ′(z1, .., zn−1) = f(z1, .., zn−1, T)

4. if f ′ is satisfiable, repeat (2) on f ′

5. if f ′ is unsatisfiable,
repeat (2) on f ′′(z1, . . . , zn−1) =
f(z1, . . . , zn−1, F).

Note: since Xd =P X , we write “X” but we
mean “Xd”

4

A notoriously hard prob-

lem

Note: all example problem have short
certificates that could easily verify “yes” in-
stance.

Def: NP is the class of problems that have
short (polynomial sized) certificates that can
easily (in polynomial time) verify “yes” in-
stances.

Historical Note: NP = non-deterministic
polynomial time

“a nondeterministic algorithm could guess
the certificate and then verify it in polyno-
mial time”

Note: Not all problems are in NP.

E.g., unsatisfiability.

Def:

• Problem X is in NP if exists short
easily-verifiable certificate.

• Problem X is NP-hard if ∀Y ∈
NP, Y ≤P X .

• Problem X is NP-complete if X ∈ NP
and X is NP-hard.

Lemma: INDEP-SET ∈ NP.

Lemma: SAT ∈ NP.

Lemma: TSP ∈ NP.

Goal: show INDEP-SET, SAT, TSP are
NP-complete.

Notorious Problem: NP

input:

• decision problem verifier program
V P .

• polynomial p(·).

• decision problem instance: x

output:

• “Yes” if exists certificate c such that
V P (x, c) has “verified = true” at
computational step p(|x|).

• “No” otherwise.

Fact: NP is NP-complete.

Note: Unknown whether P = NP.

Note: ≤P is transitive: if Y ≤P X and
X ≤P Z then Y ≤P Z.

Plan: NP ≤P CIRCUIT-SAT ≤P SAT.

5

Circuit Satisfiability

Example:

output

∧

¬

∨

F

∧

∨

T z1

∧

z2 z3

Problem 4: CIRCUIT-SAT

input: boolean circuit Q(z)

• directed acyclic graph G = (V,E)

• internal nodes labeled by logical
gates:

“and”, “or”, or “not”

• leaves labeled by variables or con-
stants

T, F, z1, . . . , zn.

• root r is output of circuit

output:

• “Yes” if exists z with Q(z) = T

• “No” otherwise.

Lemma: CIRCUIT-SAT is NP-hard.

Proof: (reduce from NP)

• goal: convert NP instance (V P, p, x) to
CIRCUIT-SAT instance Q

• V P (·, ·) polynomial time

⇒ computer can run it in poly steps.

• each step of computer is circuit.

• output of one step is input to next step

• unroll p(|x|) steps of computation

⇒ ∃ poly-size circuit Q′(x, c) =
V P (x, c)

• hardcode x: Q(c) = Q′(x, c)

• Conclusion: Q is sat iff exists c with
V P (x, c) = “verified”.

QED

6

