
EECS 336: Introduction to Algorithms Lecture 13
Network Flow Ford-fulkerson, duality, minimum cut

Reading: 7.0-7.5

Last time:

• Network flow defn

• Bipartite matching reduction.

Today:

• Network flow

• duality: max flow = min cut

Algorithm: Ford-Fulkerson

• f ← null flow.

• Gf ← G.

• while exists s-t path P in Gf (by BFS)

• augment f with P .

• Gf ← residual graph for G and f .

• return f .

Example:

s

a

b

t

20

10

30

10

20

Max flow = 30.

1

Network Flow

Example:

s

a

b

t

20

10

30

10

20

Max flow = 30.

Idea: repeatedly pus flow on s-t paths until
can’t push anymore.

Example: Push 20 on P = (s, a, b, t)

s

a

b

t

0 20

10

30 10

10

20 0

Note: when pushing flow, we can undo flow
already pushed.

Def: the residual graph Gf for flow f on
G is the graph that represents capacity con-
straints for flows after pushing f

Example: Gf

s

a

b

t

20

10

1020

10

20

Construction: Gf = (V,Ef), cf(·):
For each e = (u, v) ∈ E,

(if f(e) = c(e) discard e)

• if f(e) < c(e),

• add e to Ef

• cf (e) = c(e)− f(e)

• if f(e) > 0

• let e′ = (v, u)

• add e′ to Ef

• cf (e
′) = c(e′) + f(e)

Def: the residual capacity of e in Ef is cf (e).

Def: the bottleneck capacity of s-t path P in
Gf is minimm residual capacity of any edge
in P .

Def: an augmenting path P in a residual
graph Gf is a path with positive bottleneck
capacity.

Example: Gf after pushing 20 on P =
(s, a, b, t)

s

a

b

t

20

10

1020

10

20

Augmenting path P = (s, b, a, t) with bottle-
neck capacity 10.

Augment f with flow of 10 on P :

• f(s, b)← f(s, b) + 10

• f(a, b)← f(a, b)− 10

• f(a, t)← f(a, t) + 10

Note: can find augmenting paths with BFS.

Algorithm: Augment f with P

• b = bottleneck(P,Gf).

2

• for e in P :

• if e a foward edge:

f(e)← f(e) + b

• if e a back edge:

let e′ = back edge

f(e′)← f(e)− b.

Example: Gf after augmenting with P =
(s, b, a, t)

s

a

b

t

20

10

2010

10

20

No more augmenting paths!

Algorithm: Ford-Fulkerson

• f ← null flow.

• Gf ← G.

• while exists s-t path P in Gf (by BFS)

• augment f with P .

• Gf ← residual graph for G and f .

• return f .

Runtime

Each iteration:

• construct Gf : O(m).

• find P : O(m).

• augmentation: O(n).

• (Total: O(m))

Fact: the value of flow increases by bottle-
neck capacity in each iteration.

Theorem: if C is upper bound on max flow
and all capacities are integral then algorithm
terminates in O(C) iterations with runtime
O(mC)

Proof: (by “measure of progress”)

1. bottleneck capacities integral:

• current residual capacities integral

⇒ integral bottleneck capacity

⇒ next residual capacities inte-
gral

• induction!

2. bottleneck capacities ≥ 1

3. flow increases by 1 each iteration

4. terminates in ≤ C iterations.

QED

Note: C ≤
∑

e out of s c(e).

Note: Clever choice of augmenting paths
gives runtime O(m2 logC).

Correctness

1. f is feasible.

2. f is optimal.

Lemma: f is feasible.

Proof: induction!

3

Max flow = min cut

“duality: for maximization problem there is
corresponding minimization problem”

Recall: an s-t cut (A,B) is partition of V
into A and B with s ∈ A and t ∈ B.

Def: the capacity of cut (A,B) is

c(A,B) =
∑

e from A to B

c(e)

Goal: flow algorithm is optimal

Proof Approach: primal = dual.

Claim 1: any flow f and any cut (A,B)
then |f |

︸︷︷︸

value of flow

≤ c(A,B).

Claim 2: for flow f ∗ with no augment-
ing path in Gf∗ then exists cut (A∗, B∗) with
|f ∗| = c(A∗, B∗)

Picture:

* cuts **

**** **

*** *****

*

***** **

** ***

* flows ***

Proof: (of theorem)

• all flows |f | ≤
︸︷︷︸

by Claim 1

c(A∗, B∗) =
︸︷︷︸

by Claim 2

|f ∗|.

Corollary: value of max flow = capacity of
min cut

Lemma: for any flow f , cut (A,B) then,

|f | =
∑

e out of A

f(e)−
∑

e in to A

f(e)

Proof: (by picture, see text for formal proof)

Proof: (of Claim 1)

From Lemma:
|f | =

∑

e out of A

f(e)−
∑

e in to A

f(e)

≤
∑

e out of A

f(e)

≤
∑

e out of A

c(e)

= c(A,B)
Proof: (of Claim 2) no s-t path in Gf :

• let A∗ be vertices connected to s.

(B∗ = V \ A∗)

• (A∗, B∗) is cut:

• s ∈ S∗

• t ∈ B∗

• for all e = (u, v) out of A∗ in G:

• e 6∈ Gf

⇒ f ∗(e) = c(e)

• for all e = (u, v) in to A∗ in G:

• e′ = (v, u) 6∈ Gf

⇒ f ∗(e) = 0

• Lemma

⇒ |f | =
∑

e out of A∗

f(e)−
∑

e in to A∗

f(e)

=
∑

e out of A∗

c(e)− 0

= c(A∗, B∗)

Summary

• algorithm: augmenting paths in residual
graph.

• correctness: max-flow min-cut theorem.

• many problems can be reduced to net-
work flows.

• entire courses on network flows.

4

