
EECS 336: Introduction to Algorithms Lecture 12
Network Flow Definition, reduction, bipartite matching

Reading: 7.0-7.5

Last time:

• Shortest-paths (Bellman-Ford Alg)

Today:

• Reductions

• Network flow

• Bipartite matching

1

Reductions

“to solve problem B given solution to prob-
lem A, transform instances from problem B

into instances of A, solve, transform solution
back”

Problem A: Network Flow

“given a network with bandwidth constraints
on links, how much data can we send from
source to sink”

Def: a flow graph G = (V,E) is a directed
graph with:

• c(e) = capacity of edge e

• s ∈ V is source.

• t ∈ V is sink.

Def: a flow f in G is an assignment of flow
to edges “f(e)” satisfying:

• capacity: ∀e, f(e) ≤ c(e)

• conservation: ∀v 6= s, t,∑

e into v

f(e) =
∑

e out of v

f(e)

Def: the value of a flow is
|f | =

∑

e out of s

f(e) =
∑

e into t

f(e)

Problem: Network Flow

input: flow graph G, s, t, c(·).

output: flow f with maximum value.

Example:

s

a

b

t

20

10

30

10

20

Max flow = 30.

Theorem 1: there is an algorithm to com-
pute the max flow in polynomial time.

Theorem 2: if capacities are integral, then
max flow is integral (on each edge).

Problem B: bipartite matching

Def: G = (V,E) is a bipartite if exists par-
titioning of V into A and B s.t.,

• u, v ∈ A⇒ (u, v) 6∈ E,

• u, v ∈ B ⇒ (u, v) 6∈ E,

Recall: a matching is a set of edges M ⊆ E

each node is connected by at most one edge
in M

• a perfect matching is one where all
nodes are connected by exactly one edge.

• a maximum matching is one with max-
imum cardinality.

Problem: bipartite matching

input: bipartite graph G = (A,B,E)

output: a maximum matching M .

2

Reducing bipartite matching to

max flow

“use max flow alg to solve bipartite match-
ing.”

Steps:

1. convert matching instance into flow in-
stance.

2. run flow alg flow instance.

3. convert flow soln to matching soln.

4. prove flow soln optimal iff matching soln
optimal.

Step 1:

(a) connect s to each v ∈ A with capacity 1.

(b) connect t to each u ∈ B with capacity 1.

(c) set capacity of each edge e ∈ E to 1.

Step 2: compute (integral) max flow f

Step 3: matching isM = {e ∈ E : f(e) = 1}

Step 4: Proof:

• any matching M ′ can be turned into a
flow f ′ with |f ′| = |M ′|

(send form s to each matched edge to t

one unit of flow)

• any integral flow f ′ can be turned into a
matching M ′ with |f ′| = |M ′|

(capacity constraints imply matching)

⇒ size of output matching = value of max
flow = size of max matching.

Runtime

Tmatching(n,m) = O(n+m) + Tmax flow(n,m)

3

Network Flow

Example:

s

a

b

t

20

10

30

10

20

Max flow = 30.

Idea: repeatedly pus flow on s-t paths until
can’t push anymore.

Example: Push 20 on P = (s, a, b, t)

s

a

b

t

0 20

10

30 10

10

20 0

Note: when pushing flow, we can undo flow
already pushed.

Def: the residual graph Gf for flow f on
G is the graph that represents capacity con-
straints for flows after pushing f

Example: Gf

s

a

b

t

20

10

1020

10

20

Construction: Gf = (V,Ef), cf(·):
For each e = (u, v) ∈ E,

(if f(e) = c(e) discard e)

• if f(e) < c(e),

• add e to Ef

• cf (e) = c(e)− f(e)

• if f(e) > 0

• let e′ = (v, u)

• add e′ to Ef

• cf (e
′) = c(e′) + f(e)

Def: the residual capacity of e in Ef is cf (e).

Def: the bottleneck capacity of s-t path P in
Gf is minimm residual capacity of any edge
in P .

Def: an augmenting path P in a residual
graph Gf is a path with positive bottleneck
capacity.

Example: Gf after pushing 20 on P =
(s, a, b, t)

s

a

b

t

20

10

1020

10

20

Augmenting path P = (s, b, a, t) with bottle-
neck capacity 10.

Augment f with flow of 10 on P :

• f(s, b)← f(s, b) + 10

• f(a, b)← f(a, b)− 10

• f(a, t)← f(a, t) + 10

Note: can find augmenting paths with BFS.

Algorithm: Augment f with P

• b = bottleneck(P,Gf).

4

• for e in P :

• if e a foward edge:

f(e)← f(e) + b

• if e a back edge:

let e′ = back edge

f(e′)← f(e)− b.

Example: Gf after augmenting with P =
(s, b, a, t)

s

a

b

t

20

10

2010

10

20

No more augmenting paths!

Algorithm: Ford-Fulkerson

• f ← null flow.

• Gf ← G.

• while exists s-t path P in G (by BFS)

• augment f with P .

• Gf ← residual graph for G and f .

• return f .

Runtime

Each iteration:

• construct Gf : O(m).

• find P : O(m).

• augmentation: O(n).

• (Total: O(m))

Fact: the value of flow increases by bottle-
neck capacity in each iteration.

Theorem: if C is upper bound on max flow
and all capacities are integral then algorithm
terminates in O(C) iterations with runtime
O(nC)

Proof: (by “measure of progress”)

1. bottleneck capacities integral:

• current residual capacities integral

⇒ integral bottleneck capacity

⇒ next residual capacities inte-
gral

• induction!

2. bottleneck capacities ≥ 1

3. flow increases by 1 each iteration

4. terminates in ≤ C iterations.

QED

Note: C ≤
∑

e out of s c(e).

Note: Clever choice of augmenting paths
gives runtime O(m2 logC).

Correctness

1. f is feasible.

2. f is optimal.

Lemma: f is feasible.

Proof: induction!

5

