
EECS 336: Introduction to Algorithms Lecture 11
Dynamic Programming (cont) Bellman-Ford

Reading: 6.4, 6.8

Last time:

• Integer Knapsack

• Interval Pricing

• “finding a first decision”

Today:

• Shortest Paths.

Suggested Approach

I. identify subproblem in english

OPT(i) = “optimal schedule of
{i, . . . , n} (sorted by start time)”

II. specify subproblem recurrence

OPT(i) = max(OPT(i + 1), vi +
OPT(next(i)))

III. identify base case

OPT(n + 1) = 0

IV. write iterative DP.

(see last thurs)

Finding Optimal Schedule

“traverse memoization table to find schedule”

Algorithm: schedule

i = 1

while i < n

if memo[i+1] < vi+ memo[next(i)]

schedule i; i← next(i).

else

i← i+ 1.

endif

endwhile

1



Shortest Paths with Nega-

tive Weights

“e.g., currency exchange: nodes are curren-
cies, path weights are exchange rates, mini-
mize product of path weights.”

Note: to minimize product of path weights,
can minimize sum of logs of path weights.

Example: r1r2 = 2log2 r12log2 r2 =
2log2 r1+log

2
r2 .

Note: if r ≤ 1 then log r is negative.

Recall: Dijkstra’s Algorithm

1. initialize known distance from s as ∞,
except d(s) = 0

2. take closest unknown vertex v

(a) declare v known.

(b) update known distances to neigh-
bors of v if closer via v.

3. repeat (2) until t known.

Example:

s

a

b

t

1

5

3

2

2

Shortest Path: d(s-a-t) = 3.

Negative Edge Weights

Example 1: (Dijkstra Fails)

s

a

b

t

1

5

3

2

-2

Dijkstra’s Path: d(s-a-t) = 3

Shortest Path: d(s-a-b-t) = 2.

Example 2: (may not exist)

s t
1

1 -2

1-2

1

Negative cycle ⇒ no shortest path.

First try:

• find most negative edge “−c”

• add c to all edges.

• run Dijkstra

Example: (apply to Example 1)

s

a

b

t

3

7

5

4

0

Shortest Paths: s-a-t or s-b-t, not shortest in
original problem.

Second Try: Dynamic programming

subproblem:

OPT(v)

= shortest path from v to t.

= minu∈N(v) [c(v, u)
︸ ︷︷ ︸

weight

+OPT(u)].

Example:

s

a

b

t

Subproblems have cyclic dependencies!

2



Imposing measure of progress

“parameterize subproblems to keep track of
progress”

Lemma: if G has no negative cycles, then
minimum cost path is simple (i.e., does not
repeat nodes); therefore, it has at most n− 1
edges.

Proof: (contradiction)

• let P be the min-length path with fewest
number of edges.

• suppose (for contradiction) that P is not
simple.

⇒ P repeats a vertex v.

• no negative cycle⇒path from v to v non-
negative.

⇒ can “splice out” cycle and not in-
crease length.

⇒ new path has fewer edges than p.

→←

Idea: if simple path goes s ❀ v → u ❀ t

then u-t path has one fewer edge than v-t
path.

Part I: identify subproblem in

english

OPT(v, k)

= “length of shortest path from v to t with
at most k edges.”

Part II: write recurrence

OPT(v, k)

= minu∈N(v) [c(v, u) + OPT(u, k − 1)]

Part III: base case

• for all k: OPT(t, k) = 0.

• for all v 6= t: OPT(v, 0) =∞.

Part IV: iterative DP

Algorithm: Bellman-Ford

1. initialize

for all k: memo[t, k] = 0.

for all v 6= t: memo[v, 0] =∞.

2. for k = 1 up to n− 1,

for all v

memo[v, k] = minu∈N(v) OPT(u, k−
1).

3. return memo[s, n− 1].

Example:

s

a

b

t

1

5

3

2

-2

0 1 2 3
s ∞ ∞ 3 2
a ∞ 2 1 1
b ∞ −2 −2 −2
t 0 0 0 0

Correctness

lemma + induction.

3



Runtime

T (n,m) =

n
2

︷ ︸︸ ︷

“size of table”×

n
︷ ︸︸ ︷

“cost per entry”

= O(n3)

(better accounting: T (n,m) = O(n2+nm) =
O(nm))

4


