Reading: 6.4, 6.8

Last time:

- Integer Knapsack
- Interval Pricing
- "finding a first decision"

Today:

• Shortest Paths.

Suggested Approach

I. identify subproblem in english

OPT(i) = "optimal schedule of $\{i, \ldots, n\}$ (sorted by start time)"

II. specify subproblem recurrence

 $OPT(i) = \max(OPT(i + 1), v_i + OPT(next(i)))$

III. identify base case

OPT(n+1) = 0

IV. write iterative DP.

(see last thurs)

Finding Optimal Schedule

"traverse memoization table to find schedule"

Algorithm: schedule

$$i = 1$$

while $i < n$
if memo $[i+1] < v_i$ + memo $[next(i)]$
schedule $i; i \leftarrow next(i)$.
else
 $i \leftarrow i + 1$.
endif
endwhile

Shortest Paths with Nega- Dijkstra's Path: d(s-a-t) = 3tive Weights

"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize product of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

 $2^{\log_2 r_1} 2^{\log_2 r_2}$ Example: $r_{1}r_{2}$ = = $2^{\log_2 r_1 + \log_2 r_2}$

Note: if $r \leq 1$ then $\log r$ is negative.

Recall: Dijkstra's Algorithm

- 1. initialize known distance from s as ∞ , except d(s) = 0
- 2. take closest unknown vertex v
 - (a) declare v known.
 - (b) update known distances to neighbors of v if closer via v.
- 3. repeat (2) until t known.

Shortest Path: d(s-a-t) = 3.

Negative Edge Weights

Shortest Path: d(s-a-b-t) = 2.

Negative cycle \Rightarrow no shortest path.

First try:

- find most negative edge "-c"
- add c to all edges.
- run Dijkstra

Shortest Paths: s-a-t or s-b-t, not shortest in original problem.

Second Try: Dynamic programming

subproblem:

OPT(v)

= shortest path from v to t.

$$= \min_{u \in N(v)} \left[\underbrace{c(v, u)}_{\text{weight}} + \operatorname{OPT}(u) \right].$$

Example:

Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress"

Lemma: if G has no negative cycles, then minimum cost path is **simple** (i.e., does not repeat nodes); therefore, it has at most n-1edges.

Proof: (contradiction)

- let P be the min-length path with fewest number of edges.
- suppose (for contradiction) that P is not simple.
 - \Rightarrow P repeats a vertex v.
- no negative cycle \Rightarrow path from v to v non-negative.
 - \Rightarrow can "splice out" cycle and not increase length.
 - \Rightarrow new path has fewer edges than p.

Idea: if simple path goes $s \rightsquigarrow v \rightarrow u \rightsquigarrow t$ then *u*-*t* path has one fewer edge than *v*-*t* path.

Part I: identify subproblem in english

OPT(v,k)

= "length of shortest path from v to t with at most k edges."

Part II: write recurrence

OPT(v,k)

$$= \min_{u \in N(v)} \left[c(v, u) + OPT(u, k-1) \right]$$

Part III: base case

- for all k: OPT(t, k) = 0.
- for all $v \neq t$: $OPT(v, 0) = \infty$.

Part IV: iterative DP

Algorithm: Bellman-Ford

1. initialize

for all k: memo[t, k] = 0.

for all $v \neq t$: memo $[v, 0] = \infty$.

2. for k = 1 up to n - 1,

for all \boldsymbol{v}

Example:

$$memo[v, k] = min_{u \in N(v)} OPT(u, k-1).$$

3. return memo[s, n-1].

	0	1	2	3
s	∞	∞	3	2
a	∞	2	1	1
b	∞	-2	-2	-2
t	0	0	0	0

Correctness

lemma + induction.

 $\rightarrow \leftarrow$

Runtime

$$T(n,m) = \underbrace{\text{"size of table"}}_{n} \times \underbrace{\text{"cost per entry"}}_{n}$$
$$= O(n^3)$$

(better accounting: $T(n,m) = O(n^2 + nm) = O(nm)$)