EECS 336: Introduction to Algorithms Lecture 11
Dynamic Programming (cont) Bellman-Ford

Reading: 6.4, 6.8 Suggested Approach

Last time: I. identify subproblem in english

e Integer Knapsack OPT(i) = “optimal schedule of

e Interval Pricing {i,...,n} (sorted by start time)

, II. specify subproblem recurrence

e “finding a first decision’

OPT(i) = max(OPT(i + 1),v; +
Today: OPT(next(i)))
e Shortest Paths. III. identify base case
OPT(n+1)=0

IV. write iterative DP.

(see last thurs)

Finding Optimal Schedule

“traverse memoization table to find schedule”
Algorithm: schedule
1=1
while i < n
if memoli + 1] < v;+ memo[next(i)]
schedule 7; i +— next(7).
else
11+ 1.
endif

endwhile



Shortest Paths with Nega- Dijkstra’s Path: d(s-a-t) = 3
tive Welghts Shortest Path: d(s-a-b-t) = 2.

. Example 2: (may not exist)
e.g., currency exchange: nodes are curren-

cies, path weights are exchange rates, mini-
mize product of path weights.”

Note: to minimize product of path weights,
can minimize sum of logs of path weights.

Negative cycle = no shortest path.

Example: riry = 2lg2miglogarz
9logy r1-+logy > First try:
Note: if » <1 then logr is negative. e find most negative edge “—c¢”
Recall: Dijkstra’s Algorithm e add c to all edges.
1. initialize known distance from s as oo, e run Dijkstra

except d(s) =0
Example: (apply to #xample 1)

2. take closest unknown vertex v 3 4
(a) declare v known. S t
(b) update known distances to neigh- 7 0

bors of v if closer via v. _
Shortest Paths: s-a-t or s-b-t, not shortest in

3. repeat (2) until ¢ known. original problem.
Example: Second Try: Dynamic programming
subproblem:
OPT(v)

= shortest path from v to t.
Shortest Path: d(s-a-t) = 3.

= minyene) [c(v, u) + OPT(u)].
ight
weig

Negative Edge Weights

Example: a

Example 1: (Dijkst®a Fails)

b
Subproblems have cyclic dependencies!




Imposing measure of progress Part III: base case

“parameterize subproblems to keep track of ¢ o1 a1l k- OPT(t, k) = 0.
progress”

Lemma: if G has no negative cycles, then o forall v ##: OPT(v,0) = oo.

minimum cost path is simple (i.e., does not
repeat nodes); therefore, it has at most n — 1

edges. Part IV: iterative DP

Proof: (contradiction)

Algorithm: Bellman-Ford
e let P be the min-length path with fewest

number of edges. 1. initialize
e suppose (for contradiction) that P is not for all k: memolt, k] = 0.
simple.

= P repeats a vertex v. for all v 7 #: memolv, 0] = oo.

e 10 negative cycle =path from v to vnon- 2 for k=1 up ton —1,

negative. for all v
= can “splice out” cycle and not in-
crease length. memol[v, k| = minye () OPT(u, k—

1).

= new path has fewer edges than p.

—< 3. return memols,n — 1].

Idea: if simple path goes s ~ v — u ~ ¢

Example:
then u-t path has one fewer edge than v-t
path.
Part I: identify subproblem in
english
o 1 2 3
OPT(U, k) sl oo oo 3 D)
= “length of shortest path from v to ¢t with ajoo 2 1 1
at most k£ edges.” bloo —2 -2 =2
t1o 0 0 0
Part II: write recurrence
Correctness
OPT (v, k)
= minyen) [¢(v, u) + OPT(u, k — 1)] lemma + induction.



Runtime

TL2 n

A A

T(n,m) = “size of table” x “cost per entry”

= 0(n?)

(better accounting: T'(n,m) = O(n*+nm) =
O(nm)



