EECS 336: Introduction to Algorithms
 Lecture 11
 Dynamic Programming (cont)

Reading: 6.4, 6.8

Last time:

- Integer Knapsack
- Interval Pricing
- "finding a first decision"

Today:

- Shortest Paths.

Suggested Approach

I. identify subproblem in english
$\mathrm{OPT}(i)=$ "optimal schedule of $\{i, \ldots, n\}$ (sorted by start time)"
II. specify subproblem recurrence
$\mathrm{OPT}(i)=\max \left(\mathrm{OPT}(i+1), v_{i}+\right.$ OPT(next(i)))
III. identify base case
$\operatorname{OPT}(n+1)=0$
IV. write iterative DP.
(see last thurs)

Finding Optimal Schedule

"traverse memoization table to find schedule"
Algorithm: schedule
$i=1$
while $i<n$
if $\operatorname{memo}[i+1]<v_{i}+\operatorname{memo}[\operatorname{next}(i)]$ schedule $i ; i \leftarrow \operatorname{next}(i)$.
else

$$
i \leftarrow i+1
$$

endif
endwhile

Shortest Paths with Negative Weights

"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize product of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: $\quad r_{1} r_{2}=2^{\log _{2} r_{1} 2^{\log _{2} r_{2}}=}$ $2^{\log _{2} r_{1}+\log _{2} r_{2}}$.

Note: if $r \leq 1$ then $\log r$ is negative.
Recall: Dijkstra's Algorithm

1. initialize known distance from s as ∞, except $d(s)=0$
2. take closest unknown vertex v
(a) declare v known.
(b) update known distances to neighbors of v if closer via v.
3. repeat (2) until t known.

Example:

Shortest Path: $d(s-a-t)=3$.

Negative Edge Weights

Example 1: (Dijkstịa Fails)

Dijkstra's Path: d(s-a-t)=3
Shortest Path: $\mathrm{d}(s-a-b-t)=2$.
Example 2: (may not exist)

Negative cycle \Rightarrow no shortest path.
First try:

- find most negative edge " $-c$ "
- add c to all edges.
- run Dijkstra

Example: (apply to 玉xample 1)

b
Shortest Paths: $s-a-t$ or $s-b-t$, not shortest in original problem.

Second Try: Dynamic programming
subproblem:
$\mathrm{OPT}(v)$
$=$ shortest path from v to t.

$$
=\min _{u \in N(v)}[\underbrace{c(v, u)}_{\text {weight }}+\operatorname{OPT}(u)] .
$$

Example:

Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress"

Lemma: if G has no negative cycles, then minimum cost path is simple (i.e., does not repeat nodes); therefore, it has at most $n-1$ edges.
Proof: (contradiction)

- let P be the min-length path with fewest number of edges.
- suppose (for contradiction) that P is not simple.
$\Rightarrow P$ repeats a vertex v.
- no negative cycle \Rightarrow path from v to v nonnegative.
\Rightarrow can "splice out" cycle and not increase length.
\Rightarrow new path has fewer edges than p.

Idea: if simple path goes $s \leadsto v \rightarrow u \leadsto t$ then $u-t$ path has one fewer edge than v - t path.

Part I: identify subproblem in english

$\operatorname{OPT}(v, k)$
$=$ "length of shortest path from v to t with
at most k edges."

Part II: write recurrence

$\operatorname{OPT}(v, k)$
$=\min _{u \in N(v)}[c(v, u)+\operatorname{OPT}(u, k-1)]$

Part III: base case

- for all $k: \operatorname{OPT}(t, k)=0$.
- for all $v \neq t: \operatorname{OPT}(v, 0)=\infty$.

Part IV: iterative DP

Algorithm: Bellman-Ford

1. initialize
for all $k: \operatorname{memo}[t, k]=0$.
for all $v \neq t: \operatorname{memo}[v, 0]=\infty$.
2. for $k=1$ up to $n-1$,
for all v
$\operatorname{memo}[v, k]=\min _{u \in N(v)} \operatorname{OPT}(u, k-$ $1)$.
3. return memo $[s, n-1]$.

Example:

	0	1	2	3
s	∞	∞	3	2
a	∞	2	1	1
b	∞	-2	-2	-2
t	0	0	0	0

Correctness

lemma + induction.

Runtime

$$
\begin{aligned}
T(n, m) & =\overbrace{\text { "size of table" }}^{n^{2}} \times \overbrace{\text { "cost per entry" }}^{n} \\
& =O\left(n^{3}\right)
\end{aligned}
$$

(better accounting: $T(n, m)=O\left(n^{2}+n m\right)=$ $O(n m)$)

