EECS 336: Introduction to Algorithms
 Lecture 10 Dynamic Programming (cont)
 Integer Knapsack, Interval pricing

Announcements:

- Midterm: Tuesday, Oct 27, in class.
- one handwritten cheat sheet.
- through dynamic programming.
- midterm reviews:
- Taggart, Sunday,
- Hartline, Monday, 6-8pm,

Reading: 6.4, 6.8
Last time:

- Dynamic Programming
- Weighted Interval scheduling

Today:

- D.P. (cont.)
- Integer Knapsack
- Interval Pricing.

Suggested Approach

I. identify subproblem in english
$\mathrm{OPT}(i)=$ "optimal schedule of $\{i, \ldots, n\}$ (sorted by start time)"
II. specify subproblem recurrence
$\mathrm{OPT}(i)=\max \left(\mathrm{OPT}(i+1), v_{i}+\right.$ $\operatorname{OPT}(\operatorname{next}(i)))$
III. identify base case
$\operatorname{OPT}(n+1)=0$
IV. write iterative DP.
(see last thurs)

Interval Pricing

input: - n customers $S=\{1, \ldots, n\}$

- T days.
- i 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- i 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day t.
- consumer i buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.

Dynamic Programming: Finding Subproblems

"find a first decision you can make which breaks problem into pieces that
(a) do not interact (across subproblems)
(b) can be describe succinctly."

Example: Integer Knapsack

input: - n objects $S=\{1, \ldots, n\}$

- $s_{i}=$ size of object i (integer).
- $v_{i}=$ value of object i.
- capacity C of knapsack (integer)

output:

- subset $K \subseteq S$ of objects that
(a) fit in knapsack together

$$
\text { (i.e., } \sum_{i \in K} s_{i} \leq C \text {) }
$$

(b) maximize total value

$$
\text { (i.e., } \sum_{i \in K} v_{i} \text {) }
$$

Greedy fails, e.g.,

- largest value/size:

$$
\begin{aligned}
& \mathbf{v}=(C / 2+2, C / 2, C / 2) . \\
& \mathbf{s}=(C / 2+1, C / 2, C / 2) .
\end{aligned}
$$

- smallest value/size:

$$
\begin{aligned}
& \mathbf{v}=(1, C / 2, C / 2) \\
& \mathbf{s}=(2, C / 2, C / 2)
\end{aligned}
$$

Question: What is "first decision we can make" to separate into subproblems?

Answer: Is item 1 in the knapsack or not?

- if 1 in knapsack:
value of knapsack is $v_{i}+$ optimal knapsack value on $S \backslash\{1\}$ with capacity $C-s_{1}$.
- if 1 not in knapsack:
value of knapsack is optimal knapsack on $S \backslash\{1\}$ with capacity C.

Succinct description:

- remaining objects $\{j, \ldots, n\}$ represented by " j "
- remaining capacity represented by $D \in$ $\{0, \ldots, C\}$.

Step I: identify subproblem in Correctness English

induction
$\operatorname{OPT}(j, D)$
$=$ "value of optimal size D knapsack on Runtime $\{j, \ldots, n\}$ "

Step II: write recurrence

$\operatorname{OPT}(j, D)$

$$
=\max (\underbrace{v_{j}+\operatorname{OPT}\left(j+1, D-s_{j}\right)}_{\text {if } s_{j} \leq D}, \mathrm{OPT}(j+
$$

$1, D)$)

Step III: base case

$\operatorname{OPT}(n+1, D)=0($ for all $D)$

Step IV: iterative DP

Algorithm: knapsack

1. $\forall D$, memo $[n+1, D]=0$.
2. for $i=n$ down to 1 , for $D=C$ down to 0 ,
(a) if i fits (i.e., $s_{i} \leq D$)

$$
\begin{gathered}
\operatorname{memo}[j, D]=\max [\operatorname{memo}[j+1, D], \\
\left.v_{j}+\operatorname{OPT}\left(j+1, D-s_{j}\right)\right]
\end{gathered}
$$

(b) else,

$$
\operatorname{memo}[j, D]=\operatorname{memo}[j+1, D]
$$

3. return memo $[1, C]$

Example: Interval Pricing
input: • n customers $S=\{1, \ldots, n\}$

- T days.
- i 's ok days: $I_{i}=\left\{s_{i}, \ldots, f_{i}\right\}$
- i 's value: $v_{i} \in\{1, \ldots, V\}$
output: - prices $p[t]$ for day t.
- consumer i buys on day $t_{i}=$ $\operatorname{argmin}_{t \in I_{i}} p[t]$ if $p\left[t_{i}\right] \leq v_{i}$.
- revenue $=\sum_{i \text { that buys }} p\left[t_{i}\right]$.
- goal: maximize revenue.

Example:

Question: What is "first decision we can make" to separate into subproblems?
Answer: day and price of smallest price.
Example:

Step I: identify subproblem in English

$\operatorname{OPT}(s, f, p)$
$=$ "optimal revenue from intervals strictly between s and f with minimum price at least p "

Step II: write recurrence
OPT (s, f, p)

$$
=\max _{s<t<f, q \geq p} \operatorname{Rev}(t, p)
$$

$$
+\operatorname{OPT}(s, t, q)
$$

$$
+\mathrm{OPT}(t, f, q)
$$

Step III: base case

- $\operatorname{OPT}(s, s+1, p)=0$.
- $\operatorname{OPT}(s, t, P+1)=0$.

Step IV: iterative DP

(exercise)

Correctness

induction

Runtime

- precompute $\operatorname{Rev}(t, p)$ in $O(n V)$ time.
- size of table: $O\left(n^{2} V\right)$
- cost of combine: $O(n V)$.
- total: $O\left(n^{3} V^{2}\right)$.

Note: can be improved to $O\left(n^{4}\right)$ with slightly better program.

