
EECS 336: Introduction to Algorithms Lecture 9
Dynamic Programming Weighted Interval Scheduling

Announcements:

• midterm next tuesday, in class.

Reading: 6.0-6.3

Last time:

• Polynomial Multiplication

• Fast Fourier Transform

Today:

• Dynamic Programming

• Weighted interval scheduling

Dynamic Programming

“divide problem into small number of sub-
problems and memoize solution to avoid re-
dundant computation”

Example: Weighted Interval

Scheduling

input:

• n jobs J = {1, . . . , n}

• si = start time of job i

• fi = finish time of job i

• vi = value of job i

output: Schedule S ⊆ J of compatible jobs
with maximum total value.

Recall Greedy: “earliest finish time”

1

|---------|

100

|-------------|

Idea: job i is either in OPT(J) or not.

1. let J ′ = jobs compatible with i in J .

2. let V = value of OPT if “i ∈ OPT(j)”.

1



= vi + OPT(J ′)

3. let V ′ = vale of OPT if “i 6∈ OPT(j)”

= OPT(J \ {i}).

4. return OPT(J) = max(V, V ′).

Note: subproblems: schedule J ′ and J \ {i}.

Recurrence: T (n) = 2T (n− 1) + 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
︸ ︷︷ ︸

n levels

T (n) = O(2n)

Challenge 1: redundant computation

Example:

1 3

|---| |---|

|---------|

2

{1, 2, 3}

{2, 3}

{3}

∅ ∅

∅

{3}

∅ ∅

Note: OPT({3}) called twice!

Solution: memoize

“when computing the value of a subproblem
save the answer to avoid computing it again”

Result: runtime = # of subproblems × cost
to combine.

2



Challenge 2: could have too many sub-
problems.
(could be exponential!)

Solution: require “succinct description” of
subproblems.

Idea: for interval scheduling, process jobs in
order of start time so subproblems suffixes of
order.

• sort jobs by increasing start time, s1 ≤
s2 ≤ · · · ≤ sn.

• let next[i] denote job with earliest start
time after i finishes. (if none, set
next[i] = n + 1)

• subproblems when processing job 1:

• J ′ = {next[i], next[i] + 1, · · · , n}

• J \ {i} = {2, 3, . . . , n}

• suffix {j,. . . ,n} is succinctly described by
“j”.

Algorithm: Weighted Interval Scheduling:

1. sort jobs by increasing start time.

2. initialize array next[i].

3. initialize memo[i] = ∅ for all i.

4. initialize memo[n + 1] = 0.

5. compute OPT(1).

Subroutine: OPT(i)

1. if memo[i] 6= ∅, return memo[i].

2. memo[i]←
max(vi + OPT(next[i]), OPT(i + 1)).

3. return memo(i).

Correctness

“OPT(i)” is correct (by induction on i)

Runtime Analysis

• n subproblems

• constant time to combine

• initialization: sorting & precomputing
next array

Runtime: O(n)+ initialization = O(n log n)

3



Key Ideas of Dynamic Program-

ming

Subproblems must be:

1. succinct
(only a polynomial number of them)

2. efficiently combinable.

3. partially ordered (avoid infinite loops),
e.g.,

• process elements “once and for all”

• “measure of progress/size”.

Comparison to Divide and Conquer

Div&Conq
b

b

b b

b

b b

tree structure

Dynamic Prog.
b

b

b

b

b

b

b

b

b

b

b b

DAG structure

Iterative DPs

“fill in memoization table from bottom to
top”

Algorithm: iterative weighted interval
scheduling

1. memo[n + 1] = 0.

2. for i = n down to 1.

memo[i] = max(vi+ memo[next(i)],
memo[i + 1]).

Finding Optimal Schedule

“traverse memoization table to find schedule”

Algorithm: schedule

i = 1

while i < n

if memo[i+1] < vi+ memo[next(i)]

schedule i; i← next(i).

else

i← i + 1.

endif

endwhile

Suggested Approach

I. identify subproblem in english

OPT(i) = “optimal schedule of
{i, . . . , n} (sorted by increasing start
time)”

II. specify sumbroblem recurrence

OPT(i) = max(OPT(i + 1), vi +
OPT(next(i)))

III. identify base case

OPT(n + 1) = 0

IV. write iterative DP.

4


