Dynamic Programming

EECS 336: Introduction to Algorithms Lecture 9

Weighted Interval Scheduling

Announcements:

e midterm next tuesday, in class.

Reading: 6.0-6.3
Last time:
e Polynomial Multiplication
e Fast Fourier Transform
Today:
e Dynamic Programming

e Weighted interval scheduling

Dynamic Programming

“divide problem into small number of sub-
problems and memoize solution to avoid re-
dundant computation”

Example: Weighted Interval
Scheduling

input:

n jobs J ={1,...,n}

s; = start time of job i
e f; = finish time of job ¢
e v; = value of job ¢

output: Schedule S C J of compatible jobs
with maximum total value.

Recall Greedy: “earliest finish time”

Idea: job i is either in OPT(.J) or not.

1. let J’ = jobs compatible with ¢ in J.

2. let V = value of OPT if “ € OPT(5)”.



=v; + OPT(J) Challenge 1: redundant computation
3. let V' = vale of OPT if “i ¢ OPT(j)” Example:
= OPT(J\ {i}).
4. return OPT(J) = max(V, V). |-—=1 |-—-I
Note: subproblems: schedule J" and J\ {i}. | ————————- |

Recurrence: T(n)=2T(n—1)+1

O 0
Note: OPT({3}) called twice!
Solution: memoize

“when computing the value of a subproblem
save the answer to avoid computing it again”

Result: runtime = # of subproblems x cost
to combine.

CRCNCNONCONONONC

Vo
n levels



Challenge 2: could have too many sub- Algorithm: Weighted Interval Scheduling:
problems.

(could be exponentiall) 1. sort jobs by increasing start time.

Solution: require “succinct description” of 2 initialize array next|d].

subproblems. 3. initialize memo[i] = () for all .

Idea: for interval scheduling, process jobs in 4
order of start time so subproblems suffixes of

order. 5. compute OPT(1).

. initialize memo[n + 1] = 0.

e sort jobs by increasing start time, s; < Subroutine: OPT(7)

S9g < - < s,
== 1. if memol[i] # 0, return memoli].

e let next[i] denote job with earliest start
time after 4 finishes.  (if none, set
next[i| =n+ 1)

2. memoli| «—
max(v; + OPT (next[i]), OPT(i + 1)).

e subproblems when processing job 1: 3. return memo(7).

o J' = {next[i],next[i] + 1, -- ,n}

o J\{i}=1{2,3,....n}

e suffix {j,...,n} is succinctly described by

[1Peh]

J

Correctness

“OPT(i)” is correct (by induction on )

Runtime Analysis

e n subproblems
e constant time to combine

e initialization: sorting & precomputing
next array

Runtime: O(n)+ initialization = O(nlogn)



Key Ideas of Dynamic Program- Finding Optimal Schedule
ming
“traverse memoization table to find schedule”

Subprobl t be:
ubproblems must be Algorithm: schedule

1. succinct _
(only a polynomial number of them) =1
2. efficiently combinable. while i <n
3. partially ordered (avoid infinite loops), if memoli + 1] < v;+ memo[next(i)]
e.g.,
schedule 7; i < next(7).
e process elements “once and for all”
else
e “measure of progress/size”.
1— 1+ 1.
Comparison to Divide and Conquer endif
endwhile

Dynamic Prog.

Div&Congq
Suggested Approach
I. identify subproblem in english
Y \ OPT(i) = “optimal schedule of
tree structure {i,...,n} (sorted by increasing start
time)”
DAG structure
II. specify sumbroblem recurrence
Iterative DPs OPT(i) = max(OPT(z + 1),v; +
OPT(next(i)))
ﬁll77 in memoization table from bottom to 11 identify base case
top
Algorithm: iterative weighted interval OPT(n+1) =0
scheduling IV. write iterative DP,

1. memo[n + 1] = 0.
2. for i = n down to 1.

memo[i] = max(v;+ memo[next(s)],
memol[i + 1]).



