Divide and Conquer

EECS 336: Introduction to Algorithms

Lecture 6
Mergesort, Recurrences, Integer Mult.

Reading: 5.0-5.5.
Last time:

e Dynamic Greedy

e Dijkstra, Prim.
Today:

e Divide and Conquer
e Mergesort
e Recurrences

e Integer Mult.

Divide and Conquer

e divide problem into subproblems
e solve subproblems

e merge solutions to solve original.

Example: sorting
Algorithm: Mergesort(U):

1. if U] <1, return U

2. split U in half: Uy, Uy

3. sort U; and U, separately:
e S; = mergesort(U)
e Sy = mergesort(Us)

4. join sorted lists:

S = merge(S1, S —2)
Subroutine: Merge(S, S)
5. 85=10

6. identity .S; with minimum elt.
7. remove min from .S; and append to S

8. repeat.

Correctness: induction.

Runtime
o Merge: [Si] + [S2] = [S] =n.
e Mergesort: T'(n)
Recurrence:
o I'(n) =2T(n/2) +n
o T(1) =1

[[What is T'(n)? Il

Solving Recurrences by Un-

rolling

®

© 0 0 60 0 6

3
=

[[how much work in each level, total? 1]
[[how many levels? 1]

T'(n) = “work per level” x “number of levels”
= nlogn.

Theorem: Mergesort runs in O(nlogn).

Public Key Cryptography Question: Can we do this efficiently?

e ¢ is a large number (n bits, e.g., 256)
“send private messages over insecure chan- [[22°6 ~ 102%]]
nels”

e mf=m-m---m
——

e times

Number Theory

e brute force algorithm runs in e = 27
steps
Easy to find large r, e, and d such that,

p = exponential!!

Fact: ¥V m, m® =m (mod r)

Assumption: given r, e, and z = m°

(mod 7) it is hard to compute m
[[“discrete logarithm™]

Scenario: Alice wants to send private mes-
sage m to Bob.

Procedure:

e Bob finds r, e, d.
e (r,d) = private key.
e (r,e) = public key.
e Bob publishes (7, ¢€).
o Alice
e computes z = m® (mod)
e sends z to Bob.
e Bob
® receives T

e computes y = z¢ (mod r)

From Fact: y=m.

Problem 1: modular exponenti- Solving Recurrence by Guessing

ation
Guess T,,(e) < dloge [[for some d|

Input: number x, modulus r, exponent e Tnductively Verify:
Output: z = 2°¢ (mod r) base: T,,(1) =0 < dlogl = 0.

. . . /
if we didn’t take modulus, number would]] I.H.: assume true for e’ <e
get very big

[[How can we divide and conquer? 1] b5
Tw(e) =Tn(le/2]) + 2
Idea:
< dlog(e/2) + 2
o if e = €1 + ey then ¢ = x“ 2% (mod r) =dloge —dlog2 + 2
=dloge —d+ 2
e if 1 = ey can solve x and square. — dloge. (choose d = 2)
Algorithm: Repeated Squaring
1. if e =1 return z. Recall: n =loge.
2. ¢ = le/2]. Theorem: repeated squaring on an n

bit number takes O(n) multiplies.

3. y = repeated-square(x, €’).
4. if e odd

return y - y - x (mod 7)
5. else

return y - y (mod r)

Runtime

Let T,,(e) = number of multiplies.

Tn(e) =T,(le/2]) + 2
Tn(1) =0

Problem 2: Integer multiplica- [[mult by 2% is bit shift (easy)]]
tion
= T(n)=4T(n/2) + cn

input: n bit integers x, y. o _ ,
[[additions require cn timel]

output: 2n bit integer z = x - y.

= O(n?).

Algorithm: elementary school multiply
[[need a better ideal)]

101101 o let H = xpyyy; L = xpyy; and 2 =
x 010110 CHYL + TLYK
18(1)(1)820 [[Q: compute H, L, and Z in < 4 mults?]
101101 Idea:
000000
101101 o P=(vg+wxr)(yn +yr)
+ 000000
—————————————— = TpYH + THYL + TrYa + TLYL
whatever

=H+Z+L
Runtime: T(n) = O(n?).
3. Rearrange: 7 =P — H — L
[[can we do better? Il
= ry=H2"+(P—-H—L)2*+ L
Idea:

1. separate high order from low order bids = 3 size n/2 mults needed.

Runtime: 7T'(n) =3T(n/2)+cn
e k=n/2 [[assume n even|]
— O(nlog2 3) — O(n1.59)‘

e ry = high k bits of x
[[THIS SHOULD BE SURPRISING! 1]

e zy = low k bits of z (Google: Arthur Benjamin does ”Math-

N 2 4 emagic”)
r=uxy xr.

2. -y = (xg2* +21)(yu2® + yr) 35 x 51
= 15x100 + (8 * 6 - 15 - 5)x10 + 5
= zpyn2" + (xryn + vyr)2 oy T N 28 e /
= 1785

= one n bit mult requires 4 n/2 bit mults

