Reading: 5.0-5.5.

Last time:

- Dynamic Greedy
- Dijkstra, Prim.

Today:

- Divide and Conquer
- Mergesort
- Recurrences
- Integer Mult.

Divide and Conquer

- divide problem into subproblems
- solve subproblems
- merge solutions to solve original.

Example: sorting

Algorithm: Mergesort(U):

- 1. if $|U| \leq 1$, return U
- 2. split U in half: U_1 , U_2
- 3. sort U_1 and U_2 separately:
 - $S_1 = mergesort(U_1)$
 - $S_2 = mergesort(U_2)$
- 4. join sorted lists:

$$S = \operatorname{merge}(S_1, S - 2)$$

Subroutine: $Merge(S_1, S_2)$

- 5. $S = \emptyset$
- 6. identity S_i with minimum elt.
- 7. remove min from S_i and append to S
- 8. repeat.

Correctness: induction.

Runtime

- Merge: $|S_1| + |S_2| = |S| = n$.
- Mergesort: T(n)

Recurrence:

- T(n) = 2T(n/2) + n
- T(1) = 1

[[What is T(n)?

]]

]]

]]

[[how much work in each level, total?

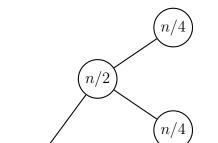
T(n) = "work per level" × "number of levels"

Theorem: Mergesort runs in $O(n \log n)$.

[[how many levels?

 $= n \log n.$

Solving Recurrences by Unrolling



- \bigcirc
- 1
- \bigcirc
- \bigcirc
- \bigcirc
- \bigcirc
- \bigcirc
- 1
- $\Theta(n)$ $\Theta(n)$ $\Theta(n)$
- $\Theta(n)$

Public Key Cryptography

"send private messages over insecure channels"

Number Theory

Easy to find large r, e, and d such that,

Fact: $\forall m, m^{ed} \equiv m \pmod{r}$

Assumption: given r, e, and $x \equiv m^e \pmod{r}$ it is hard to compute m [["discrete logarithm"]]

Scenario: Alice wants to send private message m to Bob.

Procedure:

- Bob finds r, e, d.
 - (r, d) = private key.
 - (r, e) = public key.
- Bob publishes (r, e).
- Alice
 - computes $x = m^e \pmod{r}$
 - \bullet sends x to Bob.
- Bob
 - \bullet receives x
 - computes $y = x^d \pmod{r}$

From Fact: y = m.

Question: Can we do this efficiently?

- *e* is a large number (*n* bits, e.g., 256) $[[2^{256} \approx 10^{22}]]$
- $m^e = \underbrace{m \cdot m \cdots m}_{e \text{ times}}$
- brute force algorithm runs in $e = 2^n$ steps
 - \Rightarrow exponential!!

Problem 1: modular exponenti- Solving Recurrence by Guessing ation

Input: number x, modulus r, exponent e

Output: $z \equiv x^e \pmod{r}$

 $\begin{bmatrix} \textit{if we didn't take modulus, number would} \\ \textit{get very big} \end{bmatrix}$

[[How can we divide and conquer?

Idea:

- if $e = e_1 + e_2$ then $x^e \equiv x^{e_1} x^{e_2} \pmod{r}$
- if $e_1 = e_2$ can solve x^{e_1} and square.

Algorithm: Repeated Squaring

- 1. if e = 1 return x.
- 2. e' = |e/2|.
- 3. y = repeated-square(x, e').
- 4. if e odd

return
$$y \cdot y \cdot x \pmod{r}$$

5. else

return
$$y \cdot y \pmod{r}$$

Runtime

Let $T_m(e)$ = number of multiplies.

$$T_m(e) = T_m(\lfloor e/2 \rfloor) + 2$$
$$T_m(1) = 0$$

Guess $T_m(e) \le d \log e$ [[for some d]]

Inductively Verify:

base: $T_m(1) = 0 \le d \log 1 = 0$.

I.H.: assume true for e' < e

I.S.:

]]

$$T_m(e) = T_m(\lfloor e/2 \rfloor) + 2$$

$$\leq d \log(e/2) + 2$$

$$= d \log e - d \log 2 + 2$$

$$= d \log e - d + 2$$

$$= d \log e. \quad \text{(choose } d = 2\text{)}$$

Recall: $n = \log e$.

Theorem: repeated squaring on an nbit number takes O(n) multiplies.

Problem 2: Integer multiplication

input: n bit integers x, y.

output: 2n bit integer $z = x \cdot y$.

Algorithm: elementary school multiply

Runtime: $T(n) = O(n^2)$.

[[can we do better?

Idea:

- 1. separate high order from low order bids
 - k = n/2 [[assume n even]]
 - $x_H = \text{high } k \text{ bits of } x$
 - $x_L = \text{low } k \text{ bits of } x$ $\Rightarrow x = x_H 2^k + x_L.$

2.
$$x \cdot y = (x_H 2^k + x_L)(y_H 2^k + y_L)$$

= $x_H y_H 2^n + (x_L y_H + x_H y_L) 2^k + x_L y_L$

 \Rightarrow one n bit mult requires 4 n/2 bit mults

$\lceil \lceil mult \ by \ 2^k \ is \ bit \ shift \ (easy) \rceil \rceil$

$$\Rightarrow T(n) = 4T(n/2) + cn$$

[[additions require cn time]]

$$= O(n^2).$$

[[need a better idea!]]

• let $H = x_H y_H$; $L = x_L y_L$; and $Z = x_H y_L + x_L y_H$

[[Q: compute H, L, and Z in < 4 mults?]]

Idea:

]]

•
$$P = (x_H + x_L)(y_H + y_L)$$
$$= x_H y_H + x_H y_L + x_L y_H + x_L y_L$$
$$= H + Z + L$$

3. Rearrange: Z = P - H - L

$$\Rightarrow xy = H2^n + (P - H - L)2^k + L$$

 \Rightarrow 3 size n/2 mults needed.

Runtime:
$$T(n) = 3T(n/2) + cn$$

= $O(n^{\log_2 3}) = O(n^{1.59})$.

[[THIS SHOULD BE SURPRISING!

(Google: Arthur Benjamin does "Mathemagic")

$$35 \times 51$$
= $15 \times 100 + (8 * 6 - 15 - 5) \times 10 + 5$
= ____ 28 ____/
= 1785