EECS 336: Introduction to Algorithms Lecture 5 Greedy by Value

Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

- greedy-by-value
- MST

Today:

- MST / matroid (cont.)
- dynamic greedy
- shortest paths, MSTs

Algorithm: Greedy-by-Value

1. $S=\emptyset$
2. Sort elts by decreasing value.
3. For each elt e (in sorted order):
if $\{e\} \cup S$ is feasible
add e to S
else discard e.
Example 2: minimum spanning tree input:

- graph $G=(V, E)$
- costs $c(e)$ on edges $e \in E$
output: spanning tree with minimum total cost.

Structural Observations about \Rightarrow add elements $e \in J$ to I until \# CCs Forests change.

[PICTURE]
Def: $G^{\prime}=\left(V, E^{\prime}\right)$ is a subgraph of $G=$ (V, E) if $E^{\prime} \subseteq E$.
$\Rightarrow(V, I \cup\{e\})$ is acyclic.
Def: An acyclic undirected graph is a forest
Fact 1: an MST on n vertices has $n-1$ edges.

Lemma 1: If $G=(V, F)$ is a forest with m edges then it has $n-m$ connected components.

Proof: Induction (on number of edges)
base case: 0 edges, n CCs.
IH: assume true for m.
IS: show true for $m+1$

- $\mathrm{IH} \Rightarrow n-m \mathrm{CCs}$
- add new edge.
- must not create cycle
\Rightarrow connects two connected components.
\Rightarrow these 2 CCs become 1 CC .
$\Rightarrow n-m-1$ CCs.

QED

Lemma 2: (Augmentation Lemma) If $I, J \subset E$ are forests and $|I|<|J|$ then exists $e \in J \backslash I$ such that $I \cup\{e\}$ is a forest.

Proof:

Lemma 1
\Rightarrow \# CCs of $(V, I)>\# \operatorname{CCs}$ of $(V, J) \geq \#$ CCs of $(V, I \cup J)$

Correctness

"output is tree and has minimum cost"
Goal: understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.
Proof: Induction.
Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Approach: "greedy stays ahead"
Proof: (by contradiction of first mistake)

- Greedy and OPT have $n-1$ edges (Fact 1)
- Let $I=\left\{i_{1}, \ldots, i_{n-1}\right\}$ be elt's of Greedy.
(in order)
- Let $J=\left\{j_{1}, \ldots, j_{n-1}\right\}$ be elt's of OPT.
(in order)
- Assume for contradiction: $c(I)>c(J)$
- Let r be first index with $c\left(j_{r}\right)<c\left(i_{r}\right)$
- Let $I_{r-1}=\left\{i_{1}, \ldots, i_{r-1}\right\}$
- Let $J_{r}=\left\{j_{1}, \ldots, j_{r}\right\}$
- $\left|I_{r-1}\right|<\left|J_{r}\right| \&$ Augmentation Lemma
\Rightarrow exists $j \in J_{r} \backslash I_{r-1}$
such that $I_{r-1} \cup\{j\}$ is acyclic.
- Suppose j considered after $i_{k}(k \leq r-1)$
- $I_{k} \subseteq I_{r-1}$
$\Rightarrow I_{k} \cup\{j\} \subseteq I_{r-1} \cup\{j\}$
- $I_{r-1} \cup\{j\}$ acyclic \& Fact 2
\Rightarrow all subsets are acyclic
$\Rightarrow I_{k} \cup\{j\}$ acyclic
$\Rightarrow j$ should have been added.

Matroids

Def: A set system $M=(E, \mathcal{I})$ where

- E is ground set.
- $\mathcal{I} \subseteq 2^{E}$ is set of compatible subsets of E.

Question: When does greedy-by-value algorithm work?

Question: What properties of MSTs were necessary for greedy-by-value to work?

Answer:

- MSTs are same size (Fact 1)
- augmentation property (Lemma 2)
- downward closure (Fact 2)

Note: augmentation property implies Fact 1.

Def: A matroid is a set system $M=$ (E, \mathcal{I}) satisfying:
M1 "subset property"
if $I \in \mathcal{I}$, all subsets of I are in \mathcal{I}.
M2 "augmentation property"
if $I, J \in \mathcal{I}$ and $|I|<|J|$, then exists $e \in J \backslash I$ such that $I \cup\{e\} \in \mathcal{I}$.
(compatible sets also called independent sets).

Corollary: acyclic subgraphs are a matroid.
Theorem: greedy algorithm is optimal iff feasible outputs are a matroid.

Proof:

- (\Rightarrow) same as for Theorem 1 .
- (\Leftarrow) homework.

Conclusion: to see if greedy-by-value works, check matroid properties.

Dynamic Greedy Algorithms

"adjust ordering dynamically as greedy algorithm proceeds"

Template: Repeat:

- Process minimal element by metric.
- Adjust metric on remaining elements.

Note: priority queues useful for dynamic greedy algs.

Def: priority queue data structure
Operations:

- $\operatorname{insert}(v, k)$: adds elt v to queue with key k (priority)
- decreasekey (v, k) : decreases the key of v to k
(if key is less than k, leave it the same)
- deletemin: returns elt with minimum key.

Runtimes:

- can implement all operations in $O(\log n)$

Shortest Paths

"find short path from vertex s to t in graph"
E.g., driving directions, Internet routing.

Example:

Idea: given known distance to closest $S \subset V$, then distance of closest neighbor of S to s can be found. Then, induction.

Metric: shortest one-hop distance from vertices with known distances.

Update: (after processing vertex v)

- v 's distance is known.
- update metric on unknown vertices if one-hop path from v is shorter.

Algorithm: Dijstra's Shortest Path Alg (w. Priority Q)

1. initialize
(a) for all $v, \operatorname{insert}(v, \infty)$
(b) deceasekey $(v, 0)$
2. while queue not empty
(a) $(\mathrm{v}, \mathrm{d})=\operatorname{deletemin}()$
(b) if $\mathrm{v}=\mathrm{t}$, return d .
(c) for each neighbor u of v :

$$
\operatorname{decreasekey}(u, d+c(v, u))
$$

Runtime: $\quad T(n, m)=m \log n$.

Correctness

Theorem: Dijkstra is optimal
Proof: (by induction on known vertices, see text)

MSTs, revisited

Idea: grow tree from s by adding cheapest new vertex.

Note: as we add vertices, must reevaluate cost of vertices.
Example:

Idea: grow tree from start vertex adding closest vertex to any vertex in tree

Metric: minimum one-hop distance to any vertex in current tree.

Update: (after processing vertex v)

- add v to tree.
- update metric on non-tree vertices if onehop distance to v is shorter.
Algorithm: Prim's MST Alg

1. initialize
(a) for all $v, \operatorname{insert}(v, \infty)$
(b) decreasekey $(v, 0)$
2. while queue not empty
(a) $(\mathrm{v}, \mathrm{d})=\operatorname{deletemin}()$
(b) for each neighbor u of v :

$$
\text { decreasekey }(u, c(v, u))
$$

Runtime: $\quad T(n, m)=O(n \log m)$

Correctness

Lemma: (cut lemma) For any (A, B)-cut and $e^{\prime}=(u, v)$ the min cost edge crossing cut, e^{\prime} is in every MST.

Proof: (contradiction)
Conclusion: each edge Prim adds is minimum edge on cut, therefore Prim never adds wrong edge.

