
EECS 336: Introduction to Algorithms Lecture 5
Greedy by Value Kruskal, Matroids

Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

• greedy-by-value

• MST

Today:

• MST / matroid (cont.)

• dynamic greedy

• shortest paths, MSTs

Algorithm: Greedy-by-Value

1. S = ∅

2. Sort elts by decreasing value.

3. For each elt e (in sorted order):

if {e} ∪ S is feasible

add e to S

else discard e.

Example 2: minimum spanning tree

input:

• graph G = (V,E)

• costs c(e) on edges e ∈ E

output: spanning tree with minimum total
cost.

1

Structural Observations about

Forests

Def: G′ = (V,E ′) is a subgraph of G =
(V,E) if E ′ ⊆ E.

Def: An acyclic undirected graph is a forest

Fact 1: an MST on n vertices has n − 1
edges.

Lemma 1: If G = (V, F) is a forest with
m edges then it has n−m connected compo-
nents.

Proof: Induction (on number of edges)

base case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m+ 1

• IH ⇒n−m CCs

• add new edge.

• must not create cycle

⇒ connects two connected compo-
nents.

⇒ these 2 CCs become 1 CC.

⇒ n−m− 1 CCs.

QED

Lemma 2: (Augmentation Lemma) If
I, J ⊂ E are forests and |I| < |J | then ex-
ists e ∈ J \ I such that I ∪ {e} is a forest.

Proof:

Lemma 1

⇒ # CCs of (V, I) > # CCs of (V, J) ≥ #
CCs of (V, I ∪ J)

⇒ add elements e ∈ J to I until # CCs
change.

[PICTURE]

⇒ (V, I ∪ {e}) is acyclic.

Fact 2: subgraphs of acyclic graphs are
acyclic

2

Correctness

“output is tree and has minimum cost”

Goal: understand why greedy-by-value
works.

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy out-
puts a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for
MSTs

Approach: “greedy stays ahead”

Proof: (by contradiction of first mistake)

• Greedy and OPT have n− 1 edges (Fact
1)

• Let I = {i1, . . . , in−1} be elt’s of Greedy.

(in order)

• Let J = {j1, . . . , jn−1} be elt’s of OPT.

(in order)

• Assume for contradiction: c(I) > c(J)

• Let r be first index with c(jr) < c(ir)

• Let Ir−1 = {i1, . . . , ir−1}

• Let Jr = {j1, . . . , jr}

• |Ir−1| < |Jr| & Augmentation Lemma

⇒ exists j ∈ Jr \ Ir−1

such that Ir−1 ∪ {j} is acyclic.

• Suppose j considered after ik (k ≤ r−1)

• Ik ⊆ Ir−1

⇒ Ik ∪ {j} ⊆ Ir−1 ∪ {j}

• Ir−1 ∪ {j} acyclic & Fact 2

⇒ all subsets are acyclic

⇒ Ik ∪ {j} acyclic

⇒ j should have been added.

→←

3

Matroids

Def: A set system M = (E, I) where

• E is ground set.

• I ⊆ 2E is set of compatible subsets of
E.

Question: When does greedy-by-value algo-
rithm work?

Question: What properties of MSTs were
necessary for greedy-by-value to work?

Answer:

• MSTs are same size (Fact 1)

• augmentation property (Lemma 2)

• downward closure (Fact 2)

Note: augmentation property implies Fact
1.

Def: A matroid is a set system M =
(E, I) satisfying:

M1 “subset property”
if I ∈ I, all subsets of I are in I.

M2 “augmentation property”
if I, J ∈ I and |I| < |J |, then exists
e ∈ J \ I such that I ∪ {e} ∈ I.

(compatible sets also called independent

sets).

Corollary: acyclic subgraphs are a matroid.

Theorem: greedy algorithm is optimal iff
feasible outputs are a matroid.

Proof:

• (⇒) same as for Theorem 1.

• (⇐) homework.

Conclusion: to see if greedy-by-value works,
check matroid properties.

4

Dynamic Greedy Algo-

rithms

“adjust ordering dynamically as greedy algo-
rithm proceeds”

Template: Repeat:

• Process minimal element by metric.

• Adjust metric on remaining elements.

Note: priority queues useful for dynamic
greedy algs.

Def: priority queue data structure

Operations:

• insert(v,k): adds elt v to queue with key
k (priority)

• decreasekey(v,k): decreases the key of v
to k

(if key is less than k, leave it the same)

• deletemin: returns elt with minimum
key.

Runtimes:

• can implement all operations in O(logn)

5

Shortest Paths

“find short path from vertex s to t in graph”

E.g., driving directions, Internet routing.

Example:

s v1 v2

v3

v4 t

2 2
2

23

4

Idea: given known distance to closest S ⊂ V ,
then distance of closest neighbor of S to s can
be found. Then, induction.

Metric: shortest one-hop distance from ver-
tices with known distances.

Update: (after processing vertex v)

• v’s distance is known.

• update metric on unknown vertices if
one-hop path from v is shorter.

Algorithm: Dijstra’s Shortest Path Alg
(w. Priority Q)

1. initialize

(a) for all v, insert(v,∞)

(b) deceasekey(v,0)

2. while queue not empty

(a) (v,d) = deletemin()

(b) if v = t, return d.

(c) for each neighbor u of v:

decreasekey(u,d + c(v, u))

Runtime: T (n,m) = m logn.

Correctness

Theorem: Dijkstra is optimal

Proof: (by induction on known vertices, see
text)

6

MSTs, revisited

Idea: grow tree from s by adding cheapest
new vertex.

Note: as we add vertices, must reevaluate
cost of vertices.

Example:

1
2 3

4

5

6

Idea: grow tree from start vertex adding
closest vertex to any vertex in tree

Metric: minimum one-hop distance to any
vertex in current tree.

Update: (after processing vertex v)

• add v to tree.

• update metric on non-tree vertices if one-
hop distance to v is shorter.

Algorithm: Prim’s MST Alg

1. initialize

(a) for all v, insert(v,∞)

(b) decreasekey(v,0)

2. while queue not empty

(a) (v,d) = deletemin()

(b) for each neighbor u of v:

decreasekey(u,c(v, u))

Runtime: T (n,m) = O(n logm)

Correctness

Lemma: (cut lemma) For any (A,B)-cut
and e′ = (u, v) the min cost edge crossing
cut, e′ is in every MST.

Proof: (contradiction)

Conclusion: each edge Prim adds is mini-
mum edge on cut, therefore Prim never adds
wrong edge.

7

