
EECS 336: Introduction to Algorithms Lecture 4
Greedy by Value MST, Kruskal, matroids

Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

• interval scheduling

• “greedy stays ahead”

Today:

• interval scheduling (cont.)

• greedy-by-value

• minimum spanning trees

Interval Scheduling Recap

“sharing a single resource”

Input:

• n jobs

• one machine

• requests: j̄ob i needs machine between
times s(i) and f(i)

Goal: schedule to maximize # of jobs sched-
uled.

Algorithm: Greedy by Min. Finish Time

1. S = ∅

2. Sort jobs by increasing finish time.

3. For each job j (in sorted order):

• if j if compatible with S

schedule j: S ← S ∪ {j}

• else discard j

Correctness

“schedule is compatible and optimal”

Lemma 1: schedule of algorithm is com-
patible

Proof: (by induction, straightforward)

Def:

1

• let i1, . . . , ik be jobs scheduled by greedy

• let j1, . . . , jm be jobs scheduled by OPT

Goal: show k = m.

Approach: “Greedy Stays Ahead”

Lemma 2: for r ≤ k, f(ir) ≤ f(jr)

Proof: (induction on r)

base case: r = 0

• add dummy job 0 with s(0) =
f(0) = −∞

• only change: OPT and GREEDY
schedule dummy

• so f(i0) = f(j0)

inductive hypothesis: f(ir) ≤ f(jr)

inductive step:

• Let I = {jobs starting after f(ir)}

J = {jobs starting after f(jr)}

• IH ⇒J ⊆ I

• Alg ⇒f(ir+1) = minj∈I f(j)

≤ minj∈J f(j)

≤ f(jr+1).

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

• OPT has job jk+1 but greedy terminates
at k.

• lemma 2 (with r = k)

⇒ f(ik) ≤ f(jk) (1)

• jk+1 is compatible with jk

⇒ f(jk) ≤ s(kk+1) (2)

• (1)&(2)

⇒ f(ik) ≤ s(jk+1)

⇒ jk+1 is compatible with ik

⇒ alg doesn’t terminate at k

→←

2

Greedy by Value

“to pick a feasible set with maximum total
value”

Example 1: weighted interval scheduling

“if jobs have values”

input:

• n jobs J = {1, . . . , n}

• si = start time of job i

• fi = finish time of job i

• vi = value of job i

output: Schedule S ⊆ J of compatible jobs
with maximum total value.

Question: does greedy by finish time work?

Answer: no

1

2

Algorithm: Greedy-by-Value

1. S = ∅

2. Sort elts by decreasing value.

3. For each elt e (in sorted order):

if {e} ∪ S is feasible

add e to S

else discard e.

Question: does greedy by value work?

Answer: no

1 1 1 1

--- --- --- ---

2

Example 2: minimum spanning tree

“maintaining minimal connectivity in a net-
work, e.g., for broadcast”

input:

• graph G = (V,E)

• costs c(e) on edges e ∈ E

output: spanning tree with minimum total
cost.

Def: a spanning tree of a graph G = (V,E)
is T ⊆ E s.t.

(a) (V, T) is connected.

(b) (V, T) is acyclic.

Note: Greedy-by-Value = Kruskal’s Alg

Example:

1
5 2

4

6

3

Runtime

Θ(m logn)

• Θ(m logn) to sort.

• check connectivity with union-find data
structure

amortized O(log∗ n) runtime per opera-
tion.

(recall ℓ = log∗ n⇔ n = 22
2
2

︸︷︷︸

ℓ times

)

total O(m log∗ n) runtime.

3

See “MST Structural Observations” at

end of notes.

Correctness

“output is tree and has minimum cost”

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy out-
puts a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for
MSTs

Proof: (by contradiction)

• Greedy and OPT have n− 1 edges (Fact
1)

• Let I = {i1, . . . , in−1} be elt’s of Greedy.

(in order)

• Let J = {j1, . . . , jn−1} be elt’s of OPT.

(in order)

• Assume for contradiction: c(I) > c(J)

• Let r be first index with c(jr) < c(ir)

• Let Ir−1 = {i1, . . . , ir−1}

• Let Jr = {j1, . . . , jr}

• |Ir−1| < |Jr| & Augmentation Lemma

⇒ exists j ∈ Jr \ Ir−1

such that Ir−1 ∪ {j} is acyclic.

• Suppose j considered after ik (k ≤ r−1)

• Ik ⊆ Ir−1

⇒ Ik ∪ {j} ⊆ Ir−1 ∪ {j}

• Ir−1 ∪ {j} acyclic & Fact 2

⇒ all subsets are acyclic

⇒ Ik ∪ {j} acyclic

⇒ j should have been added.

→←

4

Structural Observations about

MSTs

Def: G′ = (V,E ′) is a subgraph of G =
(V,E) if E ′ ⊆ E.

Def: An acyclic undirected graph is a forest

Def: A,B ⊆ V is a cut if A ∪ B = ∅ and
A ∩ B = E. Edge e = (u, v) crosses cut if
u ∈ A and v ∈ B (or vice versa).

Fact 1: an MST on n vertices has n − 1
edges.

Lemma 1: If G = (V, F) is a forest with
m edges then it has n−m connected compo-
nents.

Proof: Induction (on number of edges)

base case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m+ 1

• IH ⇒n−m CCs

• add new edge.

• must not create cycle

⇒ connects two connected compo-
nents.

⇒ these 2 CCs become 1 CC.

⇒ n−m− 1 CCs.

QED

Lemma 2: (Augmentation Lemma) If
I, J ⊂ E are forests and |I| < |J | then ex-
ists e ∈ J \ I such that I ∪ {e} is a forest.

Proof:

Lemma 1

⇒ # CCs of (V, I) > # CCs of (V, J) ≥ #
CCs of (V, I ∪ J)

⇒ add elements e ∈ J to I until # CCs
change.

[PICTURE]

⇒ (V, I ∪ {e}) is acyclic.

Fact 2: subgraphs of acyclic graphs are
acyclic

5

