Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

- interval scheduling
- "greedy stays ahead"

Today:

- interval scheduling (cont.)
- greedy-by-value
- minimum spanning trees

Interval Scheduling Recap

"sharing a single resource"

Input:

- n jobs
- one machine
- requests: \bar{j} ob i needs machine between times s(i) and f(i)

Goal: schedule to maximize # of jobs scheduled.

Algorithm: Greedy by Min. Finish Time

- 1. $S = \emptyset$
- 2. Sort jobs by increasing finish time.
- 3. For each job j (in sorted order):
 - if j if compatible with S schedule $j: S \leftarrow S \cup \{j\}$
 - \bullet else discard j

Correctness

"schedule is compatible and optimal"

Lemma 1: schedule of algorithm is compatible

Proof: (by induction, straightforward)

Def:

- let i_1, \ldots, i_k be jobs scheduled by greedy
- let j_1, \ldots, j_m be jobs scheduled by OPT

Goal: show k = m.

Approach: "Greedy Stays Ahead"

Lemma 2: for $r \leq k$, $f(i_r) \leq f(j_r)$

Proof: (induction on r)

base case: r = 0

- add dummy job 0 with $s(0) = f(0) = -\infty$
- only change: OPT and GREEDY schedule dummy
- so $f(i_0) = f(j_0)$

inductive hypothesis: $f(i_r) \leq f(j_r)$

inductive step:

- Let $I = \{\text{jobs starting after } f(i_r)\}$ $J = \{\text{jobs starting after } f(j_r)\}$
- IH $\Rightarrow J \subseteq I$
- Alg $\Rightarrow f(i_{r+1}) = \min_{j \in I} f(j)$ $\leq \min_{j \in J} f(j)$ $\leq f(j_{r+1}).$

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

- OPT has job j_{k+1} but greedy terminates at k.
- lemma 2 (with r = k) $\Rightarrow f(i_k) \le f(j_k) \tag{1}$
- j_{k+1} is compatible with j_k

 $\Rightarrow f(j_k) \le s(k_{k+1}) \tag{2}$

• (1)&(2)

 $\Rightarrow f(i_k) \leq s(j_{k+1})$

 $\Rightarrow j_{k+1}$ is compatible with i_k

 \Rightarrow alg doesn't terminate at k

 $\rightarrow \leftarrow$

Greedy by Value

"to pick a $\underline{\text{feasible}}$ set with maximum total value"

Example 1: weighted interval scheduling "if jobs have values"

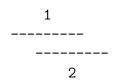
input:

- $n \text{ jobs } J = \{1, \dots, n\}$
- $s_i = \text{start time of job } i$
- f_i = finish time of job i
- v_i = value of job i

output: Schedule $S \subseteq J$ of compatible jobs with maximum total value.

Question: does greedy by finish time work?

Answer: no



Algorithm: Greedy-by-Value

- 1. $S = \emptyset$
- 2. Sort elts by decreasing value.
- 3. For each elt e (in sorted order):

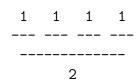
if
$$\{e\} \cup S$$
 is feasible

add e to S

else discard e.

Question: does greedy by value work?

Answer: no



Example 2: minimum spanning tree

"maintaining minimal connectivity in a network, e.g., for broadcast"

input:

- graph G = (V, E)
- costs c(e) on edges $e \in E$

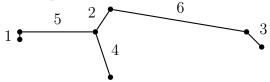
output: spanning tree with minimum total cost.

Def: a spanning tree of a graph G = (V, E) is $T \subseteq E$ s.t.

- (a) (V,T) is connected.
- (b) (V,T) is acyclic.

Note: Greedy-by-Value = Kruskal's Alg

Example:



Runtime

 $\Theta(m \log n)$

- $\Theta(m \log n)$ to sort.
- check connectivity with <u>union-find</u> data structure

amortized $O(\log^* n)$ runtime per operation.

(recall
$$\ell = \log^* n \Leftrightarrow n = \underbrace{2^{2^2}}_{\ell \text{ times}}$$
)

total $O(m \log^* n)$ runtime.

See "MST Structural Observations" at end of notes.

Correctness

"output is tree and has minimum cost"

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Proof: (by contradiction)

- Greedy and OPT have n-1 edges (Fact 1)
- Let $I = \{i_1, \dots, i_{n-1}\}$ be elt's of Greedy. (in order)
- Let $J = \{j_1, \dots, j_{n-1}\}$ be elt's of OPT. (in order)
- Assume for contradiction: c(I) > c(J)
- Let r be first index with $c(j_r) < c(i_r)$
- Let $I_{r-1} = \{i_1, \dots, i_{r-1}\}$
- Let $J_r = \{j_1, \ldots, j_r\}$
- $|I_{r-1}| < |J_r|$ & Augmentation Lemma \Rightarrow exists $j \in J_r \setminus I_{r-1}$

such that $I_{r-1} \cup \{j\}$ is acyclic.

• Suppose j considered after i_k $(k \le r-1)$

- $I_k \subseteq I_{r-1}$ $\Rightarrow I_k \cup \{j\} \subseteq I_{r-1} \cup \{j\}$
- $I_{r-1} \cup \{j\}$ acyclic & Fact 2
 - \Rightarrow all subsets are acyclic
 - $\Rightarrow I_k \cup \{j\}$ acyclic
 - \Rightarrow j should have been added.

 $\rightarrow \leftarrow$

Structural Observations about MSTs

Def: G' = (V, E') is a **subgraph** of G = (V, E) if $E' \subseteq E$.

Def: An acyclic undirected graph is a forest

Def: $A, B \subseteq V$ is a <u>cut</u> if $A \cup B = \emptyset$ and $A \cap B = E$. Edge e = (u, v) <u>crosses cut</u> if $u \in A$ and $v \in B$ (or vice versa).

Fact 1: an MST on n vertices has n-1 edges.

Lemma 1: If G = (V, F) is a forest with m edges then it has n - m connected components.

Proof: Induction (on number of edges)

base case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m+1

- IH $\Rightarrow n m$ CCs
 - add new edge.
 - must not create cycle
- ⇒ connects two connected components.
- \Rightarrow these 2 CCs become 1 CC.
- $\Rightarrow n-m-1$ CCs.

QED

Lemma 2: (Augmentation Lemma) If $I, J \subset E$ are forests and |I| < |J| then exists $e \in J \setminus I$ such that $I \cup \{e\}$ is a forest.

Proof:

Lemma 1

- \Rightarrow # CCs of (V, I) > # CCs of $(V, J) \ge$ # CCs of $(V, I \cup J)$
- \Rightarrow add elements $e \in J$ to I until # CCs change.

[PICTURE]

 $\Rightarrow (V, I \cup \{e\})$ is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic