Greedy by Value

EECS 336: Introduction to Algorithms Lecture 4

MST, Kruskal, matroids

Reading: 4.5-4.6, MIT notes on matroids.
Last Time:

e interval scheduling

e “greedy stays ahead”
Today:

e interval scheduling (cont.)

e greedy-by-value

e minimum spanning trees

Interval Scheduling Recap

“sharing a single resource”
Input:

e n jobs

e one machine

e requests: job i needs machine between
times s(z) and f(7)

Goal: schedule to maximize # of jobs sched-
uled.

Algorithm: Greedy by Min. Finish Time
1.S=0
2. Sort jobs by increasing finish time.
3. For each job j (in sorted order):
e if j if compatible with S
schedule j: S+ SU{j}

e clse discard j

Correctness

“schedule is compatible and optimal”

Lemma 1: schedule of algorithm is com-
patible

Proof: (by induction, straightforward)
Def:



e let iy,...,17; be jobs scheduled by greedy
e let 71,...,jm be jobs scheduled by OPT
Goal: show k =m.
Approach: “Greedy Stays Ahead”
Lemma 2: forr <k, f(i;) < f(jr)
Proof: (induction on )

base case: r =0

e add dummy job 0 with s(0) =
f(0) = —o0

e only change: OPT and GREEDY
schedule dummy

e s0 f(io) = f(jo)
inductive hypothesis: f(i,) < f(j,)
inductive step:
e Let I = {jobs starting after f(i,)}
J = {jobs starting after f(j,)}
e IlH=JC1I
o Alg = f(i,11) = minjes £(5)
< minjes f(j)
< fUrs1)-
Theorem: Greedy alg. is optimal
Proof: (by contradiction)

e OPT has job jii1 but greedy terminates
at k.

e lemma 2 (with r = k)

= f(ix) < f(r) (1)

® j..1 is compatible with j

= f(r) < s(kk+1)
.« (1)&(2)
= f(ir) < s(jr+1)
= jeur is compatible with iy

= alg doesn’t terminate at k



Greedy by Value

“to pick a feasible set with maximum total
value”

Example 1: weighted interval scheduling
“if jobs have values”
input:

e njobs J={1,...,n}

e 5; = start time of job ¢

e f; = finish time of job ¢

e v; = value of job 7

output: Schedule S C J of compatible jobs
with maximum total value.

Question: does greedy by finish time work?

Answer: no

Algorithm: Greedy-by-Value
1.S=0
2. Sort elts by decreasing value.
3. For each elt e (in sorted order):
if {e} U S is feasible
add e to S
else discard e.
Question: does greedy by value work?

Answer: no

Example 2: minimum spanning tree

“maintaining minimal connectivity in a net-
work, e.g., for broadcast”

input:
e graph G = (V, E)
e costs c(e) on edges e € £

output: spanning tree with minimum total
cost.

Def: aspanning tree of a graph G = (V, E)
isT C FE s.t.

(a) (V,T) is connected.
(b) (V,T) is acyclic.
Note: Greedy-by-Value = Kruskal’s Alg

Example:

Runtime

O(mlogn)
e O(mlogn) to sort.

e check connectivity with union-find data
structure

amortized O(log"n) runtime per opera-
tion.

2
(recall £ =log"n < n= 2% )

£ times

total O(mlog” n) runtime.



See “MST Structural Observations” at
end of notes.

Correctness

“output is tree and has minimum cost”

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if (G is connected, Greedy out-
puts a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for
MSTs

Proof: (by contradiction)

Greedy and OPT have n —1 edges (Fact
1)

Let I ={iy,...,in_1} be elt’s of Greedy.
(in order)
Let J ={j1,...,Jn-1} be elt’s of OPT.
(in order)
Assume for contradiction: ¢(I) > ¢(J)
Let r be first index with ¢(j,.) < ¢(i,)
Let I,y ={iy,...,i,_1}
Let J, = {j1,...,jr}
|I,—1| < |J-] & Augmentation Lemma

= exists j € J,. \ [,_4

such that I,_; U {j} is acyclic.

Suppose j considered after iy (k <r—1)

o [ C I,
= L,U{j} CL,1U{j}
o [._1U{j} acyclic & Fact 2
= all subsets are acyclic
= I U{j} acyclic

= j should have been added.



Structural Observations about
MSTs

Def: G' = (V,E’) is a subgraph of G =
(V,E)if E' C E.
Def: An acyclic undirected graph is a forest

Def: A, BC Visacutif AUB =0 and
ANB = E. Edge e = (u,v) crosses cut if
u € Aand v € B (or vice versa).

Fact 1: an MST on n vertices has n — 1
edges.
Lemma 1: If G = (V,F) is a forest with

m edges then it has n —m connected compo-
nents.

Proof: Induction (on number of edges)
base case: 0 edges, n CCs.
[H: assume true for m.
IS: show true for m + 1
o I[H =n—m CCs
e add new edge.
e must not create cycle

connects two connected compo-
nents.

these 2 CCs become 1 CC.
n—m —1 CCs.
QED

Lemma 2: (Augmentation Lemma) If
I,J C E are forests and |I| < |J| then ex-
ists e € J \ [ such that I U {e} is a forest.

Proof:

Lemma 1

= # CCs of (V,I) > # CCs of (V,J) > #
CCs of (V,1UJ)

= add elements e € J to I until # CCs
change.

[PICTURE]
= (V,1U{e}) is acyclic.

Fact 2:
acyclic

subgraphs of acyclic graphs are



