EECS 336: Introduction to Algorithms	Lecture 4 Greedy by Value

Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

- interval scheduling
- "greedy stays ahead"

Today:

- interval scheduling (cont.)
- greedy-by-value
- minimum spanning trees

Interval Scheduling Recap

"sharing a single resource"
Input:

- n jobs
- one machine
- requests: $\overline{\text { job }} i$ needs machine between times $s(i)$ and $f(i)$

Goal: schedule to maximize \# of jobs scheduled.

Algorithm: Greedy by Min. Finish Time

1. $S=\emptyset$
2. Sort jobs by increasing finish time.
3. For each job j (in sorted order):

- if j if compatible with S
schedule $j: S \leftarrow S \cup\{j\}$
- else discard j

Correctness

"schedule is compatible and optimal"
Lemma 1: schedule of algorithm is compatible

Proof: (by induction, straightforward)
Def:

- let i_{1}, \ldots, i_{k} be jobs scheduled by greedy
- let j_{1}, \ldots, j_{m} be jobs scheduled by OPT

Goal: show $k=m$.
Approach: "Greedy Stays Ahead"
Lemma 2: for $r \leq k, f\left(i_{r}\right) \leq f\left(j_{r}\right)$
Proof: (induction on r)

$$
\begin{equation*}
\Rightarrow f\left(j_{k}\right) \leq s\left(k_{k+1}\right) \tag{2}
\end{equation*}
$$

base case: $r=0$

- add dummy job 0 with $s(0)=$ $f(0)=-\infty$
- only change: OPT and GREEDY schedule dummy
- so $f\left(i_{0}\right)=f\left(j_{0}\right)$
inductive hypothesis: $f\left(i_{r}\right) \leq f\left(j_{r}\right)$
inductive step:
- Let $I=\left\{\right.$ jobs starting after $\left.f\left(i_{r}\right)\right\}$

$$
J=\left\{\text { jobs starting after } f\left(j_{r}\right)\right\}
$$

- $\mathrm{IH} \Rightarrow J \subseteq I$
- $\mathrm{Alg} \Rightarrow f\left(i_{r+1}\right)=\min _{j \in I} f(j)$

$$
\begin{aligned}
& \leq \min _{j \in J} f(j) \\
& \leq f\left(j_{r+1}\right)
\end{aligned}
$$

Theorem: Greedy alg. is optimal
Proof: (by contradiction)

- OPT has job j_{k+1} but greedy terminates at k.
- lemma 2 (with $r=k$)

$$
\begin{equation*}
\Rightarrow f\left(i_{k}\right) \leq f\left(j_{k}\right) \tag{1}
\end{equation*}
$$

- j_{k+1} is compatible with j_{k}

Greedy by Value

"to pick a feasible set with maximum total value"

Example 1: weighted interval scheduling "if jobs have values"
input:

- n jobs $J=\{1, \ldots, n\}$
- $s_{i}=$ start time of job i
- $f_{i}=$ finish time of job i
- $v_{i}=$ value of job i
output: Schedule $S \subseteq J$ of compatible jobs with maximum total value.

Question: does greedy by finish time work?
Answer: no

Algorithm: Greedy-by-Value

1. $S=\emptyset$
2. Sort elts by decreasing value.
3. For each elt e (in sorted order):
if $\{e\} \cup S$ is feasible add e to S
else discard e.
Question: does greedy by value work?
Answer: no

Example 2: minimum spanning tree
"maintaining minimal connectivity in a network, e.g., for broadcast"
input:

- graph $G=(V, E)$
- costs $c(e)$ on edges $e \in E$
output: spanning tree with minimum total cost.

Def: a spanning tree of a graph $G=(V, E)$ is $T \subseteq E$ s.t.
(a) (V, T) is connected.
(b) (V, T) is acyclic.

Note: Greedy-by-Value = Kruskal's Alg
Example:

Runtime

$\Theta(m \log n)$

- $\Theta(m \log n)$ to sort.
- check connectivity with union-find data structure
amortized $O\left(\log ^{*} n\right)$ runtime per operation.
(recall $\ell=\log ^{*} n \Leftrightarrow n=\underbrace{2^{2^{2^{2}}}}_{\ell \text { times }}$)
total $O\left(m \log ^{*} n\right)$ runtime.

See "MST Structural Observations" at end of notes.

Correctness

"output is tree and has minimum cost"
Lemma 1: Greedy outputs a forest.
Proof: Induction.
Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)
Theorem: Greedy-by-Value is optimal for MSTs

Proof: (by contradiction)

- Greedy and OPT have $n-1$ edges (Fact 1)
- Let $I=\left\{i_{1}, \ldots, i_{n-1}\right\}$ be elt's of Greedy. (in order)
- Let $J=\left\{j_{1}, \ldots, j_{n-1}\right\}$ be elt's of OPT.
(in order)
- Assume for contradiction: $c(I)>c(J)$
- Let r be first index with $c\left(j_{r}\right)<c\left(i_{r}\right)$
- Let $I_{r-1}=\left\{i_{1}, \ldots, i_{r-1}\right\}$
- Let $J_{r}=\left\{j_{1}, \ldots, j_{r}\right\}$
- $\left|I_{r-1}\right|<\left|J_{r}\right| \&$ Augmentation Lemma

$$
\Rightarrow \text { exists } j \in J_{r} \backslash I_{r-1}
$$

such that $I_{r-1} \cup\{j\}$ is acyclic.

- Suppose j considered after $i_{k}(k \leq r-1)$
- $I_{k} \subseteq I_{r-1}$
$\Rightarrow I_{k} \cup\{j\} \subseteq I_{r-1} \cup\{j\}$
- $I_{r-1} \cup\{j\}$ acyclic \& Fact 2
\Rightarrow all subsets are acyclic
$\Rightarrow I_{k} \cup\{j\}$ acyclic
$\Rightarrow j$ should have been added.

Structural Observations about \Rightarrow \# CCs of $(V, I)>\# \operatorname{CCs}$ of $(V, J) \geq \#$ MSTs
 Def: $G^{\prime}=\left(V, E^{\prime}\right)$ is a subgraph of $G=$ (V, E) if $E^{\prime} \subseteq E$. CCs of $(V, I \cup J)$
 \Rightarrow add elements $e \in J$ to I until \# CCs change.

Def: An acyclic undirected graph is a forest
Def: $A, B \subseteq V$ is a cut if $A \cup B=\emptyset$ and $A \cap B=E$. Edge $e=(u, v)$ crosses cut if $u \in A$ and $v \in B$ (or vice versa).
[PICTURE]
$\Rightarrow(V, I \cup\{e\})$ is acyclic.
Fact 2: subgraphs of acyclic graphs are acyclic

Fact 1: an MST on n vertices has $n-1$ edges.

Lemma 1: If $G=(V, F)$ is a forest with m edges then it has $n-m$ connected components.

Proof: Induction (on number of edges)
base case: 0 edges, n CCs.
IH: assume true for m.
IS: show true for $m+1$

- $\mathrm{IH} \Rightarrow n-m \mathrm{CCs}$
- add new edge.
- must not create cycle
\Rightarrow connects two connected components.
\Rightarrow these 2 CCs become 1 CC .
$\Rightarrow n-m-1$ CCs.

QED

Lemma 2: (Augmentation Lemma) If $I, J \subset E$ are forests and $|I|<|J|$ then exists $e \in J \backslash I$ such that $I \cup\{e\}$ is a forest.

Proof:
Lemma 1

