Reading: 4.1–4.2

Last Time:

- computational tractibility
- Big-oh

Today:

- Big-Oh (cont.)
- Graph Review
- Greedy Algorithms
- Interval Scheduling

Some common runtimes

- constant,
- logarithmic,
- linear,
- $n \log n$,
- quadratic,
- cubic,
- exponential

Recall: T(n) is worst-case runtime for instance of size n.

Recall: T(n) is O(f(n)) if $\exists n_0, c > 0$ such that $\forall n > n_0, T(n) < cf(n)$.

Recall: $\Omega(\cdot)$ and $\Theta(\cdot)$.

Example: $T(n) = 5n^2 - n$ is:

$$\begin{array}{c|ccc} & O(\cdot) & \Omega(\cdot) & \Theta(\cdot) \\ \hline n^3 \\ n^2 \\ n \\ \end{array}$$

Greedy Algorithms

- build solution in steps.
- each step myopically optimal
- hard part: prove final solution is optimal

Question: For what problems are greedy algorithms optimal?

Scheduling

- many tasks competing for limited resources.
- temporal constraints.
 - start & end times,
 - \bullet deadlines, and
 - one job at a time.
- find most efficient schedule.
 - most tasks schedules, or
 - best tasks scheduled

Example: CPU scheduling.

Interval Scheduling

"sharing a single resource"

Input:

- n jobs
- one machine
- requests: \overline{j} ob *i* needs machine between times s(i) and f(i)

Goal: schedule to maximize # of jobs scheduled.

--- --- --- ---

Examples: Greedy by ...

"smallest size"

• "start time"

• "fewest incompatibilities"

Analysis

Runtime

---- --- ------- --- ------ ---

Greedy Algorithm for Interval Scheduling

Idea: scheduling the earliest finish time first, leaves the least constraints on remaining schedule.

Def: jobs i and j are

- incompatible if $[s(i), f(i)] \cap [s(j), f(j)] \neq \emptyset$
- otherwise **compatible**.
- set S is compatible if all $i, j \in S$ are compatible.

Examples:

----- or ---- or ----

Algorithm: Greedy by Min. Finish Time

- 1. $S = \emptyset$
- 2. Sort jobs by increasing finish time.
- 3. For each job j (in sorted order):
 - if j if compatible with S

schedule $j: S \leftarrow S \cup \{j\}$

 $\bullet\,$ else discard j

 $= O(n^2).$ Idea: Job j in alg. is compatible if it is com-

patible with last scheduled job.

 $\approx n \log n + n^2$

 $T(n) \underbrace{\leq n \log n}_{\text{sort}} + \overbrace{\sum_{j} j}^{\bullet}$

check compatibility

 $T(n) = n \log n + n$ $= \Theta(n \log n)$

Correctness

"schedule is compatible and optimal"

Lemma 1: schedule of algorithm is compatible

Proof: (by induction, straightforward)

Def:

- let i_1, \ldots, i_k be jobs scheduled by greedy
- let j_1, \ldots, j_m be jobs scheduled by OPT

Goal: show k = m.

Approach: "Greedy Stays Ahead"

Lemma 2: for $r \leq k$, $f(i_r) \leq f(j_r)$

Proof: (induction on r)

base case: r = 0

- add dummy job 0 with $s(0) = f(0) = -\infty$
- only change: OPT and GREEDY schedule dummy

• so
$$f(i_0) = f(j_0)$$

inductive hypothesis: $f(i_r) \leq f(j_r)$

inductive step:

• Let $I = \{\text{jobs starting after } f(i_r)\}$

 $J = \{ \text{jobs starting after } f(j_r) \}$

• IH $\Rightarrow J \subseteq I$

• Alg
$$\Rightarrow f(i_{r+1}) = \min_{j \in I} f(j)$$

 $\leq \min_{j \in J} f(j)$
 $\leq f(j_{r+1}).$

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

- OPT has job j_{k+1} but greedy terminates at k.
- lemma 2 (with r = k)

$$\Rightarrow f(i_k) \le f(j_k) \tag{1}$$

• j_{k+1} is compatible with j_k

$$\Rightarrow f(j_k) \le s(k_{k+1}) \tag{2}$$

• (1)&(2)

$$\Rightarrow f(i_k) \le s(j_{k+1})$$

- $\Rightarrow j_{k+1}$ is compatible with i_k
- \Rightarrow alg doesn't terminate at k

 $\rightarrow \leftarrow$

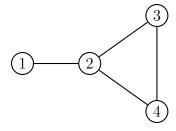
Graphs

"encode pair-wise relationships"

Examples: computer networks, social networks, travel networks, dependencies.

$$G = (V, E)$$
edges

Example:



- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (2,3), (2,4), (3,4)\}$

Concepts

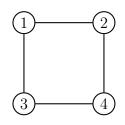
- degree
- neighbors
- paths, path length
- distance
- connectivity, connected components
- directed graphs.

Graph Traversals

"visit all the vertices in a connected component of graph"

• Breadth First Search (BFS).

Example:



BFS from 1: 1, 2, 3, 4 or 1, 3, 2, 4.

• Depth First Search (DFS).

Example: DFS from 1: 1, 2, 4, 3 or 1, 3, 4, 2.