
EECS 336: Introduction to Algorithms Lecture 3
Greedy Algorithms Interval Scheduling

Reading: 4.1–4.2

Last Time:

• computational tractibility

• Big-oh

Today:

• Big-Oh (cont.)

• Graph Review

• Greedy Algorithms

• Interval Scheduling

Some common runtimes

• constant,

• logarithmic,

• linear,

• n logn,

• quadratic,

• cubic,

• exponential

Recall: T (n) is worst-case runtime for in-
stance of size n.

Recall: T (n) is O(f(n)) if ∃n0, c > 0 such
that ∀n > n0, T (n) < cf(n).

Recall: Ω(·) and Θ(·).

Example: T (n) = 5n2 − n is:

O(·) Ω(·) Θ(·)
n3

n2

n

1



Greedy Algorithms

• build solution in steps.

• each step myopically optimal

• hard part: prove final solution is optimal

Question: For what problems are greedy al-
gorithms optimal?

Scheduling

• many tasks competing for limited re-
sources.

• temporal constraints.

• start & end times,

• deadlines, and

• one job at a time.

• find most efficient schedule.

• most tasks schedules, or

• best tasks scheduled

Example: CPU scheduling.

Interval Scheduling

“sharing a single resource”

Input:

• n jobs

• one machine

• requests: j̄ob i needs machine between
times s(i) and f(i)

Goal: schedule to maximize # of jobs sched-
uled.

Examples: Greedy by . . .

• “start time”

--- --- --- --- ---

---------------------------

• “smallest size”

--------- ---------

------

2



• “fewest incompatibilities”

---- ---- ---- ----

--- --- ---

--- ---

--- ---

Greedy Algorithm for Interval

Scheduling

Idea: scheduling the earliest finish time
first, leaves the least constraints on remaining
schedule.

Def: jobs i and j are

• incompatible if
[s(i), f(i)] ∩ [s(j), f(j)] 6= ∅

• otherwise compatible.

• set S is compatible if all i, j ∈ S are
compatible.

Examples:

----- or ---- or ---

----- ------ ---

Algorithm: Greedy by Min. Finish Time

1. S = ∅

2. Sort jobs by increasing finish time.

3. For each job j (in sorted order):

• if j if compatible with S

schedule j: S ← S ∪ {j}

• else discard j

Analysis

Runtime

T (n)≤ n log n
︸ ︷︷ ︸

sort

+

check compatibility
︷ ︸︸ ︷
∑

j
j

≈ n log n+ n2

= O(n2).

Idea: Job j in alg. is compatible if it is com-
patible with last scheduled job.

T (n) = n logn + n

= Θ(n logn)

3



Correctness

“schedule is compatible and optimal”

Lemma 1: schedule of algorithm is com-
patible

Proof: (by induction, straightforward)

Def:

• let i1, . . . , ik be jobs scheduled by greedy

• let j1, . . . , jm be jobs scheduled by OPT

Goal: show k = m.

Approach: “Greedy Stays Ahead”

Lemma 2: for r ≤ k, f(ir) ≤ f(jr)

Proof: (induction on r)

base case: r = 0

• add dummy job 0 with s(0) =
f(0) = −∞

• only change: OPT and GREEDY
schedule dummy

• so f(i0) = f(j0)

inductive hypothesis: f(ir) ≤ f(jr)

inductive step:

• Let I = {jobs starting after f(ir)}

J = {jobs starting after f(jr)}

• IH ⇒J ⊆ I

• Alg ⇒f(ir+1) = minj∈I f(j)

≤ minj∈J f(j)

≤ f(jr+1).

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

• OPT has job jk+1 but greedy terminates
at k.

• lemma 2 (with r = k)

⇒ f(ik) ≤ f(jk) (1)

• jk+1 is compatible with jk

⇒ f(jk) ≤ s(kk+1) (2)

• (1)&(2)

⇒ f(ik) ≤ s(jk+1)

⇒ jk+1 is compatible with ik

⇒ alg doesn’t terminate at k

→←

4



Graphs

“encode pair-wise relationships”

Examples: computer networks, social net-
works, travel networks, dependencies.

G = (V

vertices

, E

edges

)

Example:

1 2

3

4

• V = {1, 2, 3, 4}

• E = {(1, 2), (2, 3), (2, 4), (3, 4)}

Concepts

• degree

• neighbors

• paths, path length

• distance

• connectivity, connected components

• directed graphs.

Graph Traversals

“visit all the vertices in a connected compo-
nent of graph”

• Breadth First Search (BFS).

Example:

1 2

3 4

BFS from 1: 1, 2, 3, 4 or 1, 3, 2, 4.

• Depth First Search (DFS).

Example: DFS from 1: 1, 2, 4, 3 or 1,
3, 4, 2.

5


