Reading: Chapter 1 & 2.

Announcements:

- Canvas (vs. Piazza?)
- grading:
 - homework: 50%
 - participation: 10%
 - midterm: 15% (10/27)
 - final: 25% (12/3)
- new labs.
 - Monday: 10, 11, 4, 5.
 - Tuesday: 10, 11.
- homework partners (must be same lab)
- Homework plan:
 - assigned thursday, due thursday, work in pairs, graded for accuracy and quality.
 - peer review (mandatory and extra credit).
 - automatic extension to sunday (for 25% of grade)
- TA: Sam Taggart.
- office hours
 - hartline: Tues, 1-2pm, Ford 3-329.
 - taggart: Wed, 10:30-12pm, TBA.

Algorithms

- algorithms are everywhere. examples:
 - digital computers,
 - parlementary procedure,
 - scientific method,
 - biological processes.
- algorithms design and analysis governs everything.
- good algorithms are closest things to magic.
- course philosophy: no particular algorithm is important.
- course goals: how to design, analize, and think about algorithms.
- we will not cover anything you could figure out on your own.

Algorithms for Fibonacci Remembering Redundant Computa-Numbers

" $(0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots)$ "

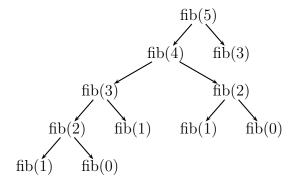
Question: recursive alg?

Algorithm: Recursive Fibonacci

fib(k):

- 1. if $k \leq 1$ return k
- 2. (else) return fib(k-1) + fib(k-2)

Example:



Analysis

"what is runtime?"

Let
$$T(k) =$$
 number of calls to fib

$$T(0) = T(1) = 1$$

$$T(k) = T(k-1) + T(k-2)$$

$$\geq 2T(k-2)$$

$$\geq 2 \times 2T(k-4)$$

$$\geq \underbrace{2 \times 2 \times \cdots \times 2}_{k/2 \text{ times}} \times 1$$

$$= 2^{k/2}$$

Conclusion: at least "exponential time"!

tion (memoization)

remember redundant computation Idea: (memoize)

Algorithm: Memoized Recursive Fibonacci

fib-helper(k)

- 1. if memo[k] ≥ 0 return memo[k]
- 2. (else) return fib-helper(k-1) + fibhelper(k-2)

fib(k)

- 1. memo = new int[k];
- 2. memo[0] = 0, memo[1] = 1, memo[2,...,k]= -1;
- 3. return fib-helper(k)

Example:

3 50 21

Analysis

- cost to fill in each entry: 1 additions.
- number of entries: k
- total cost: T(k) = k additions.

Conclusion: "linear time".

Note: memoizing redundant computation is essential part of "dynamic programming".

Iterative Algorithm

Algorithm: Iterative Memoized Fibonacci fib(k):

- 1. memo = new int[k];
- 2. memo[0] = 0, memo[1] = 1
- 3. for i = 2..k

memo[i] = memo[i-1] + memo[i-2]

4. return memo[k]

Question: Can we compute fib with less memory (space)?

Algorithm: Iterative Fibonacci

fib(k):

- 1. last[0] = 0, last[1] = 1;
- 2. for i = 2..k
 - (a) tmp = last[1]
 - (b) last[1] = last[0] + last[1]
 - (c) last[0] = tmp
- 3. return last[1]

Question: faster alg?

Fast Fibonacci

Analysis

Note: algorithm operates on last like a matrix multiply

fib(k):

1.
$$z = \begin{bmatrix} 0 & 1 \end{bmatrix}; A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

2. multiply $z \times \underbrace{A \times A \cdots \times A}_{k-2 \text{ times}}$

3. return z[1]

Note: just need to compute $z \times A^{k-2}$

Exponentiation

"compute A^{k} "

Note: If $k = k_1 + k_2$ then $A^k = A^{k_1} A^{k_2}$

- compute A^{k_1} and A^{k_2} and multiply.
- if $k_1 = k_2$ then redundant computation

Idea: factor $A^k = (A^k / 2)^2 \times A^k / 2$

Algorithm: Repeated Squaring

- 1. if k = 1 return A
- 2. k' = |k/2|.
- 3. B = repeated-square(A, k').
- 4. if k odd

return $B \times B \times A$

5. else

return $B\times B$

Let
$$T(k)$$
 = number of multiplies.
 $T(1) = 0$
 $T(k) = T(k/2) + 2$
 $= T(k/4) + 2 + 2$
 $= \underbrace{2+2+2\cdots 2}_{\log k \text{ times}}$
 $= 2\log k$

Note: finding subproblems is important part of "divide and conquer"

Algorithm: Fibonacci numbers via repeated squaring

$$fib(k)$$
:

1.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

2. $z = [0 \ 1] \times \text{repeated-square}(A, k - 2).$

3. return z[1].

Analysis

 $2\log k$ 2x2 matrix multiplies.

Conclusions

- runtime analysis
- memoization
- divide and conquer