
EECS 336: Introduction to Algorithms Lecture 1
Algorithms for Fibonacci Numbers memoization, repeated-squaring

Reading: Chapter 1 & 2.

Announcements:

• Canvas (vs. Piazza?)

• grading:

• homework: 50%

• participation: 10%

• midterm: 15% (10/27)

• final: 25% (12/3)

• new labs.

• Monday: 10, 11, 4, 5.

• Tuesday: 10, 11.

• homework partners (must be same lab)

• Homework plan:

• assigned thursday, due thursday,
work in pairs, graded for accuracy
and quality.

• peer review (mandatory and extra
credit).

• automatic extension to sunday (for
25% of grade)

• TA: Sam Taggart.

• office hours

• hartline: Tues, 1-2pm, Ford 3-329.

• taggart: Wed, 10:30-12pm, TBA.

Algorithms

• algorithms are everywhere. examples:

• digital computers,

• parlementary procedure,

• scientific method,

• biological processes.

• algorithms design and analysis governs
everything.

• good algorithms are closest things to
magic.

• course philosophy: no particular algo-
rithm is important.

• course goals: how to design, analize, and
think about algorithms.

• we will not cover anything you could fig-
ure out on your own.

1



Algorithms for Fibonacci

Numbers

“0, 1, 1, 2, 3, 5, 8, 13, 21, . . . ”

Question: recursive alg?

Algorithm: Recursive Fibonacci

fib(k):

1. if k ≤ 1 return k

2. (else) return fib(k − 1) + fib(k − 2)

Example:

fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

Analysis

“what is runtime?”

Let T (k) = number of calls to fib

T (0) = T (1) = 1

T (k) = T (k − 1) + T (k − 2)

≥ 2T (k − 2)

≥ 2× 2T (k − 4)

≥ 2× 2× · · · × 2
︸ ︷︷ ︸

k/2 times

×1

= 2k/2

Conclusion: at least “exponential time”!

Remembering Redundant Computa-
tion (memoization)

Idea: remember redundant computation
(memoize)

Algorithm: Memoized Recursive Fibonacci

fib-helper(k)

1. if memo[k] ≥ 0 return memo[k]

2. (else) return fib-helper(k-1) + fib-
helper(k-2)

fib(k)

1. memo = new int[k];

2. memo[0] = 0, memo[1] = 1, memo[2,...,k]
= -1;

3. return fib-helper(k)

Example:

0 1 1 2 3 5

Analysis

• cost to fill in each entry: 1 additions.

• number of entries: k

• total cost: T (k) = k additions.

Conclusion: “linear time”.

Note: memoizing redundant computation is
essential part of “dynamic programming”.

Iterative Algorithm

Algorithm: Iterative Memoized Fibonacci

fib(k):

2



1. memo = new int[k];

2. memo[0] = 0, memo[1] = 1

3. for i = 2..k

memo[i] = memo[i-1] + memo[i-2]

4. return memo[k]

Question: Can we compute fib with less
memory (space)?

Algorithm: Iterative Fibonacci

fib(k):

1. last[0] = 0, last[1] = 1;

2. for i = 2..k

(a) tmp = last[1]

(b) last[1] = last[0] + last[1]

(c) last[0] = tmp

3. return last[1]

Question: faster alg?

3



Fast Fibonacci

Note: algorithm operates on last like a ma-
trix multiply

fib(k):

1. z = [0 1]; A =

[
0 1
1 1

]

2. multiply z × A× A · · · ×A
︸ ︷︷ ︸

k − 2 times

3. return z[1]

Note: just need to compute z ×Ak−2

Exponentiation

“compute Ak”

Note: If k = k1 + k2 then Ak = Ak1Ak2

• compute Ak1 and Ak2 and multiply.

• if k1 = k2 then redundant computation

Idea: factor Ak =
(
Ak / 2

)2
× Ak % 2

Algorithm: Repeated Squaring

1. if k = 1 return A

2. k′ = ⌊k/2⌋ .

3. B = repeated-square(A, k′).

4. if k odd

return B × B × A

5. else

return B × B

Analysis

Let T (k) = number of multiplies.
T (1) = 0

T (k) = T (k/2) + 2

= T (k/4) + 2 + 2

= 2 + 2 + 2 · · ·2
︸ ︷︷ ︸

log k times

= 2 log k

Note: finding subproblems is important part
of “divide and conquer”

Algorithm: Fibonacci numbers via re-
peated squaring

fib(k):

1. A =

[
0 1
1 1

]

.

2. z = [0 1]× repeated-square(A, k − 2).

3. return z[1].

Analysis

2 log k 2x2 matrix multiplies.

Conclusions

• runtime analysis

• memoization

• divide and conquer

4


