CS 332: Online Markets

Lecture 16: Offline Matching

Last Time:

- differential privacy
- exponential mechanism vs exponential weights

Today:

- matching markets
- maximum weight matching
- market clearing
- ullet ascending prices algorithm
- duality

Exercise: House Allocation

Setup:

- two buyers 1 and 2
- two houses A and B
- values:

	Buyer 1	Buyer 2
House A	8	6
House B	7	3

Questions:

- What house does buyer 1 get in the welfare maximizing matching?
- What is the welfare of the optimal matching?

Matching Markets

E.g.

- eBay: sellers and buyers
- ad auctions: advertisers and users
- uber: drivers and riders

Typically:

- one side is long-lived and strategic
- one side is short-lived and behavioral

Setup:

- n buyers (strategic), n items (non-strategic)
- buyers want an item
- items can be sold to a buyer
- buyer i's value for item j: v_i^i
- goal: matching **x** to maximize welfare $\sum_{ij} x_j^i v_j^i$

A.k.a.: maximum weighted bipartite maching

Recall: Bipartite Matching

Recall: bipartite graph (A, B, E)

Recall: perfect matching

" $M \subset E$ with each vertex matched exactly once"

Recall:

• neighborhood of vertex $a \in A$ is

$$N(a) = \{b \in B : (a, b) \in E\}$$

• neighborhood of set vertices $S \subset A$ is

$$N(S) = \{b \in B : a \in S \& (a, b) \in E\}$$

Recall Hall's Theorem: a bipartite graph (A, B, E) has perfect matching iff all $S \subset A$ has $|S| \leq |N(S)|$

Market Clearing

"prices where there is no contention for items, and unsold items have price 0"

Def: (bipartite) **demand graph** D at prices **p** is:

$$N(i) = \operatorname{argmax}_{j} \mathbf{v}_{i}^{i} - \mathbf{p}_{j}$$

Def: prices \mathbf{p} are market clearing if demand graph has perfect matching

Example:

• preferences:

	Buyer 1	Buyer 2	Buyer 3
House A	9	7	6
House B	8	6	2
House C	0	2	4

- prices: $(p_A, p_B, p_C) = (2, 1, 0)$
- demand graph:

Matching Algorithms

Alg: Ascending Prices (AP)

- 0. initialize prices: $\mathbf{p} = \mathbf{0}$
- 1. Construct demand graph D
- 2. if D has perfect matching, output it and halt. (i.e., if \mathbf{p} are market clearing)
- 3. else,
 - a) find set S "minimally" violating Hall's Thm
 - b) increase prices of N(S) until demand set of buyer $i \in S$ changes.
 - c) repeat (1)

Example:

• input:

	Buyer 1	Buyer 2	Buyer 3
House A	9	7	6
House B	8	6	2
House C	0	2	4

• simulate algorithm:

Exercise: House Pricing

Setup:

- two buyers 1 and 2
- two houses A and B
- values:

	Buyer 1	Buyer 1
House A	8	6
House B	7	3

Questions:

- Are prices $p_A = 5$ and $p_B = 3$ market clearing?
- Are prices $p_A = 7$ and $p_B = 7$ market clearing?
- What is price for House A in Ascending Prices Algorithm?
- What is price for House B in Ascending Prices Algorithm?

Ascending Prices Analysis

Thm: Ascending Prices Alg maximizes welfare

Proof: Primal = Dual

"for maximization problem, corresponding minimization problem"

Primal Program:

$$\begin{split} \text{Primal}(\mathbf{x}) &= \max_{\mathbf{x}} \sum_{ij} \mathbf{v}_{j}^{i} \mathbf{x}_{j}^{i} \\ \text{s.t.} & \sum_{j} \mathbf{x}_{j}^{i} \leq 1 \qquad \forall i \qquad (*) \\ & \sum_{i} \mathbf{x}_{j}^{i} \leq 1 \qquad \forall j \qquad (**) \\ & \mathbf{x}_{j}^{i} \geq 0 \qquad \forall i, j \end{split}$$

Dual Program:

$$\begin{split} \text{Dual}(\mathbf{u},\mathbf{p}) &= \min_{\mathbf{u},\mathbf{p}} \sum\nolimits_i \mathbf{u}^i + \sum\nolimits_j \mathbf{p}_j \\ \text{s.t. } \mathbf{u}^i + \mathbf{p}_j &\geq \mathbf{v}^i_j \qquad \forall i,j \quad (***) \\ \mathbf{u}^i &\geq 0 \qquad \forall i \\ \mathbf{p}_j &\geq 0 \qquad \forall j \end{split}$$

Intuition:

- utilities ${\bf u}$ and prices ${\bf p}$
- $u^i \ge v^i_j p_i$

Lemma 1: $Primal(x) \leq Dual(u, p)$

Lemma 2: alg's termination condition identifies dual solution with value equal to primal.

Proof 1:

- \bullet any primal feasible ${\bf x}$
- any dual feasible \mathbf{u}, \mathbf{p}

$$\begin{split} \operatorname{Primal}(\mathbf{x}) &= \sum\nolimits_{ij} \mathsf{v}_j^i \, \mathsf{x}_j^i \\ [\operatorname{dual feas. \ (***)}] &\leq \sum\nolimits_{ij} (\mathsf{u}^i + \mathsf{p}_j) \, \mathsf{x}_j^i \\ &= \sum\nolimits_i \sum\nolimits_j \mathsf{u}^i \, \mathsf{x}_j^i + \sum\nolimits_j \sum\nolimits_i \mathsf{p}_j \, \mathsf{x}_j^i \\ &= \sum\nolimits_i \mathsf{u}^i \sum\nolimits_j \mathsf{x}_j^i + \sum\nolimits_j \mathsf{p}_j \sum\nolimits_i \mathsf{x}_j^i \\ [\operatorname{primal feas. \ (*,**)}] &\leq \sum\nolimits_i \mathsf{u}^i + \sum\nolimits_j \mathsf{p}_j = \operatorname{Dual}(\mathbf{u},\mathbf{p}) \end{split}$$

Proof 2:

- for prices **p** and allocation **x** from algorithm,
- \bullet set ${\bf u}$ as utilities of buyers
- $\mathbf{u}^i = \mathbf{v}^i_j \mathbf{p}_j \text{ if } \mathbf{x}^i_j = 1$
- perfect matching of demand sets $\Rightarrow \forall i, j : \mathbf{u}^i \geq \mathbf{v}^i_i \mathbf{p}_i$
 - ⇒ dual feasibility
- inequalities are equalities in proof of Lemma 1.
 ⇒ primal = dual.