CS 396: Online Markets

Lecture 4: Online Learning

Last Time:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomplete information analysis (Bayes-Nash equilbrium)

Today:

- online learning
- best in hindsight
- regret
- exponential weights
- learning rates

Exercise: Online Learning

Setup:

- $n=10$ days
- you choose umbrella or not
- then nature chooses weather
- payoffs

	it rains	it is sunny
you take umbrella	1	0
you don't take umbrella	0	1

Question: What's your best strategy?

Online Learning

"make decisions over time, learn to do well"

Model:

- k actions
- n rounds
- action j 's payoff in round $i: \mathrm{v}_{j}^{i} \in[0, h]$
- in round i :
(a) choose an action j^{i}
(b) learn payoffs $\mathrm{v}_{1}^{i}, \ldots, \mathrm{v}_{k}^{i}$
(c) obtain payoff $\mathrm{v}_{j^{i}}^{i}$.
- payoff $\mathrm{ALG}=\sum_{i=1}^{n} \mathrm{v}_{j^{i}}^{i}$

Goal: profit close to best action in hindsight
Def: the best in hindsight payoff is

$$
\mathrm{OPT}=\max _{j} \sum_{i=1}^{n} \mathrm{v}_{j}^{i}
$$

Def: the regret of the algorithm is

$$
\begin{aligned}
\operatorname{Regret}_{n} & =1 / n[\mathrm{OPT}-\mathrm{ALG}] \\
& =1 / n\left[\max _{j} \sum_{i=1}^{n} \mathrm{v}_{j}^{i}-\sum_{i=1}^{n} \mathrm{v}_{j^{i}}^{i}\right]
\end{aligned}
$$

Goal: vanishing regret, a.k.a. "no regret"

$$
\text { i.e., } \lim _{n \rightarrow \infty} \operatorname{Regret}_{n}=0
$$

Alg 0: follow the leader (FTL)

- let $\mathrm{V}_{j}^{i}=\sum_{r=1}^{i} \mathrm{v}_{j}^{r}$
- in round i choose: $>j^{i}=\operatorname{argmax}_{j} \mathrm{~V}_{j}^{i-1}$

Example: $k=2$ actions

	1	2	3	4	5	6	\ldots
Action 1	$1 / 2$	0	1	0	1	0	\ldots
Action 2	0	1	0	1	0	1	\ldots

- $\mathrm{OPT} \approx n / 2$
- $\mathrm{FTL} \approx 0$
- worst-case regret is constant, i.e., $\Theta(1)$

Thm: all deterministic online learning algorithms have $\Theta(1)$ worst-case regret.

Proof Sketch: In each round i, nature gives payoff 0 to ALG's action, and payoff 1 to all other actions.

Conclusion: must randomized.

Exercise: Follow the Leader

Setup:

	1	2	3	4	5
Action 1	$1 / 2$	1	0	0	1
Action 2	0	1	1	1	1

Question: What action does follow the leader choose in rounds 3? And round 5?

Learning Algorithms

Idea: exponentially increase (resp. decrease) probability on good (resp. bad) actions.
Alg 1: exponential weights (EW)

- learning rate ϵ
- let $\mathrm{V}_{j}^{i}=\sum_{r=1}^{i} \mathrm{v}_{j}^{r}$
- in round i choose j with probability π_{j}^{i} proportional to $(1+\epsilon)^{V_{j}^{i-1} / h}$

$$
\text { i.e., } \pi_{j}^{i}=\frac{(1+\epsilon)^{v_{j}^{i-1} / h}}{\sum_{j^{\prime}}(1+\epsilon)^{v_{j}^{i-1} / h}}
$$

Example:

- $\epsilon=1$
- $\mathrm{v}_{j}^{i} \in\{0,1\}$
- exp. weights $=$ "double score if payoff $=1 "$

	1	2	3	4
Action 1	1	1	0	0
Action 2	0	0	1	1
	$:-:$	-	-	-
Weight 1	1	2	4	4
Weight 2	1	1	1	2

Intuition: learning rate ϵ

- small ϵ : takes a long time to make good decisions.
- large ϵ : long run decisions are not accurate.

Thm: for payoffs in $[0, h]$,

$$
\mathbf{E}[\mathrm{EW}] \geq(1-\epsilon) \mathrm{OPT}-\frac{h}{\epsilon} \ln k
$$

Cor: in n steps and payoffs in $[0, h]$, tune learning rate ϵ so

$$
\mathbf{E}[\operatorname{Regret}(\mathrm{EW})] \leq 2 h \sqrt{\frac{\ln k}{n}}
$$

Proof:

- $\mathrm{OPT}<h n$
- $\mathbf{E}[\mathrm{EW}] \geq \mathrm{OPT}-\epsilon h n-\frac{h}{\epsilon} \ln k$
- choose learning rate to equate: $\epsilon h n=\frac{h}{\epsilon} \ln k$
- $\Rightarrow \epsilon=\sqrt{\frac{\ln k}{n}}$
- Regret $=\frac{1}{n}[2 h n \epsilon]=2 h \sqrt{\frac{\ln k}{n}}$

Note: to set learning rate

- larger $n \Rightarrow$ slower learning rate is optimal
- larger $k \Rightarrow$ faster learning rate is optimal

