
CS 396: Online Markets

Lecture 4: Online Learning
Last Time:

• auction theory
• second-price auction
• first-price auction
• complete information analysis

(Nash equilibrium)
• incomplete information analysis

(Bayes-Nash equilbrium)

Today:

• online learning
• best in hindsight
• regret
• exponential weights
• learning rates

Exercise: Online Learning
Setup:

• n = 10 days
• you choose umbrella or not
• then nature chooses weather
• payoffs

it rains it is sunny
you take umbrella 1 0

you don’t take umbrella 0 1

Question: What’s your best strategy?

Online Learning
“make decisions over time, learn to do well”

Model:

• k actions
• n rounds
• action j’s payoff in round i: vi

j ∈ [0, h]
• in round i:

(a) choose an action ji

(b) learn payoffs vi
1, . . . , vi

k

(c) obtain payoff vi
ji .

• payoff ALG =
∑n

i=1 vi
ji

Goal: profit close to best action in hindsight

Def: the best in hindsight payoff is

OPT = max
j

n∑
i=1

vi
j

Def: the regret of the algorithm is

Regretn = 1/n[OPT − ALG]

= 1/n

[
maxj

∑n

i=1
vi

j −
∑n

i=1
vi

ji

]
Goal: vanishing regret, a.k.a. “no regret”

i.e., limn→∞ Regretn = 0

Alg 0: follow the leader (FTL)

• let Vi
j =

∑i
r=1 vr

j

• in round i choose: > ji = argmaxj Vi−1
j

Example: k = 2 actions

1 2 3 4 5 6 . . .
Action 1 1/2 0 1 0 1 0 . . .
Action 2 0 1 0 1 0 1 . . .

• OPT ≈ n/2
• FTL ≈ 0
• worst-case regret is constant, i.e., Θ(1)

Thm: all deterministic online learning algorithms
have Θ(1) worst-case regret.

Proof Sketch: In each round i, nature gives payoff
0 to ALG’s action, and payoff 1 to all other actions.

Conclusion: must randomized.
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Exercise: Follow the Leader

Setup:

1 2 3 4 5
Action 1 1/2 1 0 0 1
Action 2 0 1 1 1 1

Question: What action does follow the leader choose
in rounds 3? And round 5?

Learning Algorithms
Idea: exponentially increase (resp. decrease) proba-
bility on good (resp. bad) actions.

Alg 1: exponential weights (EW)

• learning rate ϵ
• let Vi

j =
∑i

r=1 vr
j

• in round i choose j with probability πi
j propor-

tional to (1 + ϵ)Vi−1
j

/h

i.e., πi
j = (1+ϵ)

Vi−1
j

/h∑
j′ (1+ϵ)

Vi−1
j′ /h

Example:

• ϵ = 1
• vi

j ∈ {0, 1}
• exp. weights = “double score if payoff = 1”

1 2 3 4
Action 1 1 1 0 0
Action 2 0 0 1 1
——– :-: - - -
Weight 1 1 2 4 4
Weight 2 1 1 1 2

Intuition: learning rate ϵ

• small ϵ: takes a long time to make good decisions.
• large ϵ: long run decisions are not accurate.

Thm: for payoffs in [0, h],

E[EW] ≥ (1 − ϵ) OPT −h

ϵ
ln k.

Cor: in n steps and payoffs in [0, h], tune learning
rate ϵ so

E[Regret(EW)] ≤ 2h

√
ln k

n

Proof:

• OPT < hn
• E[EW] ≥ OPT −ϵhn − h

ϵ ln k

• choose learning rate to equate: ϵhn = h
ϵ ln k

• ⇒ ϵ =
√

ln k
n

• Regret = 1
n [2hnϵ] = 2h

√
ln k
n

Note: to set learning rate

• larger n ⇒ slower learning rate is optimal
• larger k ⇒ faster learning rate is optimal
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