CS 396: Online Markets

Lecture 16: Offline Matching

Last Time:

- differential privacy
- exponential mechanism vs exponential weights

Today:

- matching markets
- maximum weight matching
- market clearing
- duality
- externality pricing mechanism (a.k.a, Vickrey-Clarke-Groves, VCG)

Exercise: House Allocation

Setup:

- two buyers 1 and 2
- two houses A and B
- values:

	Buyer 1	Buyer 2
House A	8	6
House B	7	3

Questions:

- What house does buyer 1 get in the welfare maximizing matching?
- What is the welfare of the optimal matching?

Matching Markets

E.g.

- eBay: sellers and buyers
- ad auctions: advertisers and users
- uber: drivers and riders

Typically:

- one side is long-lived and strategic
- one side is short-lived and behavioral

Setup:

- *n* buyers (strategic), *n* items (non-strategic)
- buyers want an item
- items can be sold to a buyer
- buyer *i*'s value for item *j*: v_j^i
- goal: matching **x** to maximize welfare $\sum_{ij} x_j^i v_j^i$

A.k.a.: maximum weighted bipartite maching

Recall: Bipartite Matching

Recall: bipartite graph (A, B, E)

Recall: perfect matching

" $M \subset E$ with each vertex matched exactly once"

Recall:

• **neighborhood** of vertex $a \in A$ is

 $N(a) = \{ b \in B : (a, b) \in E \}$

• **neighborhood** of set vertices $S \subset A$ is

 $N(S) = \{ b \in B : a \in S \& (a, b) \in E \}$

Recall Hall's Theorem: a bipartite graph (A, B, E)has perfect matching iff all $S \subset A$ has $|S| \leq |N(S)|$

Market Clearing

"prices where there is no contention for items, and unsold items have price 0"

Def: (bipartite) **demand graph** D at prices **p** is:

 $N(i) = \operatorname{argmax}_{i} \mathsf{v}_{j}^{i} - \mathsf{p}_{j}$

Def: prices **p** are **market clearing** if demand graph has perfect matching

Matching Algorithms

Alg: Ascending Prices (AP)

- 0. initialize prices: $\mathbf{p} = \mathbf{0}$
- 1. Construct demand graph D
- if D has perfect matching, output it and halt. (i.e., if **p** are market clearing)
- 3. else,
 - a) find set S "minimally" violating Hall's Thm
 - b) increase prices of N(S) until demand set of buyer $i \in S$ changes.
 - c) repeat (1)

Example:

• input:

	Buyer 1	Buyer 2	Buyer 3
House A	9	7	6
House B	8	6	2
House C	0	2	4

• simulate algorithm:

1	A 0	1	- A 1	1 — A 2
2	B0	$2 \longrightarrow$	≥ B 0	2 B1
3^{-1}	C 0	3	C 0	3 ————————————————————————————————————

Exercise: House Pricing

Setup:

- two buyers 1 and 2
- two houses A and B
- values:

	Buyer 1	Buyer 1
House A	8	6
House B	7	3

Questions:

- Are prices $p_A = 5$ and $p_B = 3$ market clearing?
- Are prices $p_A = 7$ and $p_B = 7$ market clearing?
- What is price for House A in Ascending Prices Algorithm?
- What is price for House B in Ascending Prices Algorithm?

Ascending Prices Analysis

Thm: Ascending Prices Alg maximizes welfare

Proof: Primal = Dual

"for maximization problem, corresponding minimization problem"

Primal Program:

$$\begin{aligned} \operatorname{Primal}(\mathbf{x}) &= \max_{\mathbf{x}} \sum_{ij} \mathsf{v}_{j}^{i} \mathsf{x}_{j}^{i} \\ \text{s.t.} &\sum_{j} \mathsf{x}_{j}^{i} \leq 1 \qquad \forall i \qquad (*) \\ &\sum_{i} \mathsf{x}_{j}^{i} \leq 1 \qquad \forall j \qquad (**) \\ &\mathsf{x}_{j}^{i} \geq 0 \qquad \forall i, j \end{aligned}$$

Dual Program:

$$\begin{aligned} \text{Dual}(\mathbf{u},\mathbf{p}) &= \min_{\mathbf{u},\mathbf{p}} \sum_{i} \mathbf{u}^{i} + \sum_{j} \mathbf{p}_{j} \\ \text{s.t. } \mathbf{u}^{i} + \mathbf{p}_{j} \geq \mathbf{v}_{j}^{i} & \forall i, j \quad (***) \\ \mathbf{u}^{i} \geq 0 & \forall i \\ \mathbf{p}_{j} \geq 0 & \forall j \end{aligned}$$

Intuition:

- utilities **u** and prices **p**
- $u^i \ge v^i_j p_i$

Lemma 1: $Primal(\mathbf{x}) \leq Dual(\mathbf{u}, \mathbf{p})$

Lemma 2: alg's termination condition identifies dual solution with value equal to primal.

Proof 1:

- any primal feasible **x**
- any dual feasible **u**, **p**

$$\begin{split} \text{Primal}(\mathbf{x}) &= \sum_{ij} \mathsf{v}_j^i \mathsf{x}_j^i \\ [\text{dual feas. (***)}] &\leq \sum_{ij} (\mathsf{u}^i + \mathsf{p}_j) \mathsf{x}_j^i \\ &= \sum_i \sum_j \mathsf{u}^i \mathsf{x}_j^i + \sum_j \sum_i \mathsf{p}_j \mathsf{x}_j^i \\ &= \sum_i \mathsf{u}^i \sum_j \mathsf{x}_j^i + \sum_j \mathsf{p}_j \sum_i \mathsf{x}_j^i \\ [\text{primal feas. (*,**)}] &\leq \sum_i \mathsf{u}^i + \sum_j \mathsf{p}_j = \text{Dual}(\mathbf{u},\mathbf{p}) \end{split}$$

Proof 2:

- for prices ${\boldsymbol{p}}$ and allocation ${\boldsymbol{x}}$ from algorithm,
- set **u** as utilities of buyers
- $\mathbf{u}^i = \mathbf{v}^i_j \mathbf{p}_j$ if $\mathbf{x}^i_j = 1$
- perfect matching of demand sets $\Rightarrow \forall i, j: u^i \ge v_j^i - p_j$ \Rightarrow dual feasibility
- inequalities are equalities in proof of Lemma 1.
 ⇒ primal = dual.

Offline Matching Mechainsms

Mech: Externality Pricing (EP)

- 0. solicit bids $\mathbf{b} = (\mathbf{b}_1^1, \dots, \mathbf{b}_k^n)$
- Compute optimal welfare W = OPT(b) and outcome x
- 2. Compute optimal welfare without bidder *i*: $W_{-i} = OPT(\mathbf{b}_{-i})$
- 3. Charge bidders **externality**: $\mathbf{p}^{i} = W_{-i} - (W - \mathbf{b}_{i}^{i} \mathbf{x}_{i}^{i})$

A.k.a.: Vickrey-Clarke-Groves (VCG) Mechanism

Thm: Externality Pricing Mechanism is truthful.

Proof:

- consider alternative payment $q^i = -(W b^i_j x^i_j)$ "pay bidder value of others"
- truthtelling utility is $\mathbf{v}_{i}^{i}\mathbf{x}_{i}^{i} + (W - \mathbf{b}_{i}^{i}\mathbf{x}_{i}^{i}) = W$

"bidder's utility equals society's welfare"

- EP maximizes society's welfare on truthful bids
 ⇒ optimal to bid truthfully.
- qⁱ is the same as pⁱ except for "constant" W_{-i}
 "constants don't affect strategies"

Offline Matching Mechanisms (Revisited)

Mech: Ascending Auction (AA)

"implement ascending prices (AP) as auction"

Q: What are good strategies?

A: "report demand sets truthfully"

Thm: EP's prices = AP's prices.

Cor: "truthtelling" is dominant strategy in AA.