EECS 336: Lecture 6: Introduction to Example: Interval Pricing Algorithms

Dynamic Programming (cont) interval pricing

Reading: 6.5

Last Time:

- Approach: isolating previous decisions
- Shortest-paths (Bellman-Ford Alg)

Today:

- interval pricing
- summary of dynamic programming
- comparison to divide and conquer

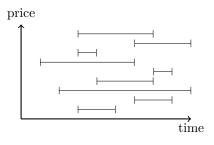
input:

- *n* customers $S = \{1, ..., n\}$
- T days.
- *i*'s ok days: $I_i = \{s_i, ..., f_i\}$
- *i*'s value: $v_i \in \{1, ..., V\}$

output:

- prices p[t] for day t.
- consumer *i* buys on day $t_i = argmin_{t \in I_i} p[t]$ if $p[t] \le v_i.$
- revenue = $\sum_{i \text{that buys}} p[t_i]$.
- goal: maximize revenue.

Example:

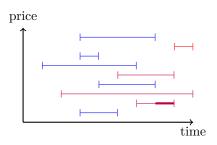


let's use dynamic programming. subproblem?

Question: What is "first decision we can make" to separate into subproblems?

Answer: day and p rice of smallest price.

Example:



Step I: identify subproblem in English

OPT(s, f, p) = "optimal revenue from customers iwith intervals $\{s_i, ..., f_i\}$ contained within interval $\{s + 1, ..., f - 1\}$ with minimum price at least p.

Step II: write recurrence

OPT(s, f, p)= $\max_{t \in \{s+1, \dots, f-1\}; q \in \{p, \dots, V\}} \operatorname{Rev}(s, t, f, p)$ + OPT(s, t, q)+ OPT(t, f, q).

with

Rev(s, t, f, p) = "the revenue from customers i with intervals $\{s_i, ..., f_i\}$ contained within interval $\{s + 1, ..., f - 1\}$ with price p."

Step III: value of optimal solution

• optimal interval pricing = OPT(0, T + 1, 0)

Step IV: base case

- OPT(s, s+1, p) = 0.
- OPT(s, t, V + 1) = 0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

- precompute $\Re ev(s,t,f,p)$ in $O(T^3Vn)$ time.
- size of table: $O(T^2V)$
- cost of combine: O(TV)
- total: $O(T^3V(V+n))$

Note: without loss of generality T, V are O(n) so runtime is $O(n^5)$.

Note: can be improved to $O(n^4)$ with slightly better program.

Step VII: implementation

(exercise)

Summary of Dynamic Programming

"divide the problem into small number of subproblems and memoize solution to avoid redundant computation."

Finding Subproblems

- identify a first decision, subproblems for each outcome of decision.
- partition problem, summarize information from one part needed to solve other part.

Subproblem Properties

- 1. succinct (only a polynomial number of them)
- 2. efficiently combinable.
- 3. depend on "smaller" subproblems (avoid infinite loops), e.g.,
 - process elements "once and for all" [today]
 - "measure of progress/size" [coming soon]

Runtime Analysis

runtime = initialization + size of table \times cost to combine

Finding Solution

- write DP to identify value of optimal solution.
- traverse memoization table to determine actual solution.