
EECS 336: Lecture 6: Introduction to
Algorithms
Dynamic Programming (cont) interval pricing

Reading: 6.5

Last Time:

• Approach: isolating previous decisions

• Shortest-paths (Bellman-Ford Alg)

Today:

• interval pricing

• summary of dynamic programming

• comparison to divide and conquer

Example: Interval Pricing

input:

• n customers S = {1, ..., n}

• T days.

• i’s ok days: Ii = {si, ..., fi}

• i’s value: vi ∈ {1, ..., V }

output:

• prices p[t] for day t.

• consumer i buys on day ti = argmint∈Ii
p[t] if

p[t] ≤ vi.

• revenue =
∑

ithat buys p[ti].

• goal: maximize revenue.

Example:

time

price

let’s use dynamic programming. subproblem?

Question: What is “first decision we can make” to
separate into subproblems?

Answer: day and p rice of smallest price.

Example:

time

price

1

Step I: identify subproblem in English

OPT(s, f, p) = "optimal revenue from customers i
with intervals {si, ..., fi} contained within interval
{s + 1, ..., f − 1} with minimum price at least p.

Step II: write recurrence

OPT (s, f, p)

= maxt∈{s+1,...,f−1};q∈{p,...,V }Rev(s, t, f, p)

+OPT(s, t, q)

+OPT(t, f, q).

with

Rev(s, t, f, p) = “the revenue from customers
i with intervals {si, ..., fi} contained within
interval {s + 1, ..., f − 1} with price p.”

Step III: value of optimal solution

• optimal interval pricing = OPT(0, T + 1, 0)

Step IV: base case

• OPT(s, s + 1, p) = 0.

• OPT(s, t, V + 1) = 0.

Step V: iterative DP

(exercise)

Correctness

induction

Step VI: Runtime

• precompute $Rev(s,t,f,p) in O(T 3V n) time.

• size of table: O(T 2V)

• cost of combine: O(TV)

• total: O(T 3V (V + n))

Note: without loss of generality T, V are O(n) so
runtime is O(n5).

Note: can be improved to O(n4) with slightly better
program.

Step VII: implementation

(exercise)

2

Summary of Dynamic Programming
“divide the problem into small number of subproblems
and memoize solution to avoid redundant computa-
tion.”

Finding Subproblems

• identify a first decision, subproblems for each
outcome of decision.

• partition problem, summarize information from
one part needed to solve other part.

Subproblem Properties

1. succinct (only a polynomial number of them)

2. efficiently combinable.

3. depend on “smaller” subproblems (avoid infinite
loops), e.g.,

• process elements “once and for all” [today]

• “measure of progress/size” [coming soon]

Runtime Analysis

runtime = initialization + size of table × cost to
combine

Finding Solution

• write DP to identify value of optimal solution.

• traverse memoization table to determine actual
solution.

3

	EECS 336: Lecture 6: Introduction to Algorithms
	Dynamic Programming (cont) interval pricing
	Example: Interval Pricing
	Step I: identify subproblem in English
	Step II: write recurrence
	Step III: value of optimal solution
	Step IV: base case
	Step V: iterative DP
	Correctness
	Step VI: Runtime
	Step VII: implementation

	Summary of Dynamic Programming
	Finding Subproblems
	Subproblem Properties
	Runtime Analysis
	Finding Solution

