EECS 336: Lecture 10: Introduction to Algorithms
P vs. NP: indep set, hamiltonian cycle, 3d matching
Reading: 8.4, 8.5, 8.6.
"guide to reductions"

Last Time:

- reductions (cont)
- tractability and intractability
- 3 -SAT \leq_{p} INDEP-SET

Today:

- 3 -SAT \leq_{p} INDEP-SET
- 3 -SAT \leq_{p} HAMILTONIAN-CYCLE
- 3 -SAT $\leq_{p} 3 \mathrm{D}-\mathrm{MATCHING}$

Reduction Illustrated

Problems	3-SAT	INDEP-SET
Instance	f	$\left(V^{f}, E^{f}, \theta^{f}\right)$
Solution	\mathbf{z}	S^{f}

Problem Y : 3-SAT
input: boolean formula $f(\mathbf{z})=\bigwedge_{j=1}^{m}\left(l_{j 1} \vee l_{j 2} \vee l_{j 3}\right)$

- literal $l_{j k}$ is variable " z_{i} " or negation " \bar{z}_{i} "
- "and of ors"
- e.g., $f(\mathbf{z})=\left(z_{1} \vee \bar{z}_{2} \vee z_{3}\right) \wedge\left(z_{2} \vee \bar{z}_{5} \vee\right.$ $\left.z_{6}\right) \wedge \ldots$
output:
- "Yes" if assignment \mathbf{z} with $f(\mathbf{z})=T$ exists
e.g., $\mathbf{z}=(T, T, F, T, F, \ldots)$
- "No" otherwise.

Problem X: INDEP-SET
input: $G=(V, E), k$
output: "yes" if $\exists S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq \theta$

Independent Set Reduction
Lemma: 3 -SAT $\leq{ }_{p}$ INDEP-SET
Part 1: forward instance construction convert 3-SAT instance f into INDEP-SET instance $\left(V^{f}, E^{f}, \theta^{f}\right)$.

- goal: "at least one true literal per clause" \Leftrightarrow "independent set of size at least θ "
- literal $l_{i j} \Rightarrow$ vertices $v_{i j} \in V^{f}$
- "all clauses true" $\Rightarrow \theta^{f}=m$
- "literal conflicts" \Rightarrow conflict edges.
$\forall i: l_{j k}=" z_{i} "$ and $l_{j^{\prime} k^{\prime}}=" \bar{z}_{i} " \Rightarrow\left(v_{j k}, v_{j^{\prime} k^{\prime}}\right) \in E^{f}$
- "one representative per clause" \Rightarrow clause edges.

$$
\forall j:\left(v_{j 1}, v_{j 2}\right),\left(v_{j 2}, v_{j 3}\right),\left(v_{j 3}, v_{j 1}\right) \in E^{f}
$$

Example:

$f(\mathbf{z})=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Runtime Analysis: linear time (one vertex per literal.)

Part II: reverse certificate construction
construct assignment z from S^{f}
(if (V^{f}, E^{f}) has indep. set S^{f} size $\geq \theta^{f}=m$ then f is satisfiable.)

1. For each z_{r} :
(a) if exists vertex in S^{f} labeled by " z_{r} " set $z_{r}=T$
(b) else

$$
\text { set } z_{r}=F
$$

Claim: if vertex in S is labeled by " \bar{z}_{r} " then no vertices in S are labeled by " z_{r} " and z_{r} is set to False.
(because of conflict edge between vertex labeled " \bar{z}_{r} " and all vertices labeeleed " z_{r} ".)
Claim: S^{f} independent and $\left|S^{f}\right| \geq m \Rightarrow f(\mathbf{z})=T$:

- S has $|S|=m$
$\Rightarrow S$ has one vertex per clause.
- for clause i and $v_{i j} i n S$:
if $l_{i j}$ not negated, then z_{i} is true (by construction)
if $l_{i j}$ is negated then z_{i} is false (by claim)
- $\operatorname{So} f(\mathbf{z})=T$.

Part III: forward certificate construction construct independent set S^{f} from z
(if f is satisfiable then $\left(V^{f}, E^{f}\right)$ has indep set size $\geq m=\theta^{f}$.)

1. let S^{\prime} be nodes in $\left(V^{f}, E^{f}\right)$ corrpesonding to true literals.
2. if more than one vertex in S^{\prime} in same triangle drop all but one.
$\Rightarrow S^{f}$.
Claim: z satisfies $f(\mathbf{z}) \Rightarrow S^{f}$ independent and $\left|S^{f}\right| \geq$ m

- all clauses have true literal
$\Rightarrow\left|S^{\prime}\right| \geq m$ and $|S|=m$
- for all $u, v \in S$,
$-u \& v$ not in same triangle.
$-l_{u}$ and l_{v} both true
\Rightarrow must not conflict
\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in $\left(V^{f}, E^{f}\right)$.
- so S^{f} is independent.

Reductions From 3-SAT

Must Encode:
a) "at least one true literal per clause"
b) "true literals for each z_{i} either all" z_{i} " or all " \bar{z}_{i} "

Problem: Hamiltonian Cycle

input: directed graph (V, E)
output: "yes" if exists cycle C that visits each vertex exactly once.

Lemma: hamiltonian cycle is NP-hard
Proof: (reduction from 3-SAT)
Part I: construction
(turn 3-SAT formula f in to graph $\left(V^{f}, E^{f}\right)$ with hamiltonian cycle iff f is satisfiable)

- idea: variable $=$ isolated path, right-to- left $=$ true, left-to-right $=$ false.
- idea: clause is node, which needs to be hit by at most one literal being true.
- construction:
- left-right path per variable.
- splice in clause nodes.

Runtime: $O(n m)$
Part II: reverse certificate construction

- high-level: ensure "other paths" do not exist.

Part III: forward certificate construction

- high-level: confirm "desired path" exists.

Problem: Traveling Salesman (TSP)
Lemma: TSP is $\mathcal{N} \mathcal{P}$-hard.
Proof: reduction from Hamiltonian Cycle
Part I: forward instance construction

- encode edges with cost 1
- encode non-edges with cost n.

Part II \& III: exists $H C$ iff $T S P$ cost $\leq n$

Problem: 3D-MATCHING

Input: tripartite hypergraph (A, B, C, E)

- vertices A, B, C,
- edges $E \subset A \times B \times C$

Output: "yes" if exist prefect matching $M \subset E$

3D Matching

Lemma: 3 -SAT $\leq_{p} 3$ D-MATCHING
Part I: forward instance construction
(convert 3-SAT instance f into 3D-MATCHING instance $\left.\left(A^{f}, B^{f}, C^{f}, E^{f}\right)\right)$
variable gadget i :

- vertices $a_{i 1}, \ldots, a_{i m}, b_{i 1}, \ldots, b_{i m}, c_{i 1 T}, \ldots, c_{i m T}$, $c_{i 1 F}, \ldots, c_{i m F}$
- true edges $\left\{\left(a_{i j}, b_{i j}, c_{i j T}\right): j \in[m]\right\}$
- false edges $\left\{\left(a_{i j}, b_{i j}, c_{i j F}\right): j \in[m]\right\}$
- m true tips, m false tips.
clause gadget j :
- two vertices a_{j}, b_{j}
literal edge $l_{j k}$:
- " $z_{i} " \Rightarrow\left(a_{j}, b_{j}, c_{i j T}\right)$
- " $\bar{z}_{i} " \Rightarrow\left(a_{j}, b_{j}, c_{i j F}\right)$
cleanup gadgets $r \in\{1, \ldots, 2 m n-m\}$:
- two vertices $a_{r}^{\prime}, b_{r}^{\prime}$
- edges $\left\{\left(a_{r}^{\prime}, b_{r}^{\prime}, c_{i j B}\right): i \in[n], j \in[m], B \in\right.$ $\{T, F\}\}$
Parts II \& III: see book.

