EECS 336: Lecture 9: Introduction to Summary of Reduction Algorithms

Reductions, Decision Problems

Reading: "guide to reductions"

Last Time:

- max flow alg / ford-fulkerson
- duality: \max flow = \min cut

Today:

- reductions (cont)
- tractability and intractability
- decision problems

Exercise 9.1: Matching to Flow

Setup: Recall Matching to Flow reduction:

Step 1:

- i. connect s to each $v \in A$ with capacity 1.
- ii. connect t to each $u \in B$ with capacity 1.

iii. add edges $e \in E$ with capacity 1.

Step 2: compute (integral) max flow f

Step 3: matching $M = e \in E : f(e) = 1$

Question: Assuming network flow algorithm runs in O(m'C') where $C' = \sum_{e \text{ out of } s} c(e)$ and m' = |E|, what is runtime of bipartite matching algorithm on (A, B, E) with |A| = |B| = n vertices in each part and |E| = m edges?

Reduction Illustrated

Problems	Bipartite Matching	Network Flow
Instance	x = (A, B, E)	$y^x = (V^x, E^x, c^x, s^x, t^x)$
Solution	M	f^x

Def: X reduces to Y in polynomial time (notation: $X \leq_P Y$ if any instance of X can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of Y.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for Y implies correctness of algorithm for X.

Def: one-call reduction maps instance of X to instance of Y, solution of X to solution of Y. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:

- I. contruction of Y^X instance from X instance.
- II. construction of X solution from Y^X solution (with same value.)

Note: the proof of correctness of a one-call reduction gives additional algorithm:

III. construction of Y^X solution from X solution (with same value.)

Note: Only need to consider Y^X instance not general X instance.

Theorem: reduction from "I and II" is correct if I, II, and III are correct.

Proof:

- for instance x of X, let instance of y^x of Y^X be outcome of I.
- II correct \Rightarrow OPT $(x) \ge$ OPT (y^x) .
- III correct \Rightarrow OPT $(y^x) \ge$ OPT(x).

$$\Rightarrow \operatorname{OPT}(x) = \operatorname{OPT}(y^x)$$

 \Rightarrow output of reduction has value OPT(y).

Exercise 9.2: Perfect Matching

Setup:

- Consider the bipartite graph (A, B, E) with 100 vertices in each part, i.e., |A| = |B| = 100.
- Suppose this bipartite graph has a *perfect match-ing*.
- Consider the reduction to network flow (were the bipartite graph is converted into a network flow instance).

Question:

Can you determine the value of the maximum flow in the network flow instance?

- a. Yes, it is 100.
- b. No, but it is at most 100.
- c. No, and it could be less than or more than 100.

Decision Problems

"problems with yes/no answer"

- **Def:** A decision problem asks "does a feasible solution exist?"
- **Example:** network flow in (V, E, c, s, t) with value at least θ .
- **Example:** perfect matching in a bipartite graph (A, B, E).

Note: objective values for decision problem is 1 for "yes" and 0 for "no".

Note: II and III only need to check "yes" instances.

Note: If solution not needed then reduction is Step I and proof is Steps II and III.

Theorem: perfect matching reduces to network flow decision problem.

Note: Can convert optimization problem to decision problem

Def: the decision problem X_d for optimization problem X has input $(x, \theta) =$ "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Deciding is as hard as optimizing

Proof: (reduction via binary search)

- given
 - instance x of X
 - black-box \mathcal{A} to solve X_d
- $\operatorname{search}(A, B) = \operatorname{find} \operatorname{optimal} \operatorname{value} \operatorname{in} [A, B].$
 - -D = (A+B)/2
 - $-\operatorname{run} \mathcal{A}(x,D)$
 - if "yes," search(A, D)
 - if "no," search(D, B)

Reductions for Intractability

"reduce known hard problem Y to problem X to show that X is hard"

Challenge: show problem X is intractable.

"there does not exist algorithm A that solves every $x \in X$ in polynomial time in |x|."

Instead: show that solving X enables solving known hard problem Y.

Proof by contradiction:

- assume X is tractable
- can solve Y from X
- so Y is tractable
- contradiction

Tractability and Intractability

Consequences of $Y \leq_p X$:

1. if X can be solved in polynomial time then so can Y.

Example: X = network-flow; Y = bipartite matching.

2. if Y cannot be solved in polynomial time then neither can X.

Reductions for Intractability

"reduce known hard problem Y to problem X to show that X is hard"

Challenge: show problem X is intractable.

"there does not exist algorithm A that solves every $x \in X$ in polynomial time in |x|."

Instead: show that solving X enables solving known hard problem Y.

Proof by contradiction:

- assume X is tractable
- can solve Y from X
- so Y is tractable
- contradiction

Problem Y: 3-SAT

input: bloom formula $f(\mathbf{z}) = \bigwedge_{j=1}^{m} (l_{j1} \vee l_{j2} \vee l_{j3})$

- literal l_{jk} is variable " z_i " or negation " \bar{z}_i "
- "and of ors"
- e.g., $f(\mathbf{z}) = (z_1 \lor \overline{z}_2 \lor z_3) \land (z_2 \lor \overline{z}_5 \lor z_6) \land \dots$

output:

• "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$ exists

e.g., $\mathbf{z} = (T, T, F, T, F, ...)$

• "No" otherwise.

Problem X: INDEP-SET

input: G = (V, E), k

ouput: "yes" if $\exists S \subset V$

- satisfying $\forall v \in S, (u, v) \notin E$
- $|S| \ge \theta$

Reduction

Lemma: 3-SAT \leq_p INDEP-SET

Part 1: forward instance construction

convert 3-SAT instance f into INDEP-SET instance (V^f, E^f, θ^f) .

- goal: "at least one true literal per clause" \Leftrightarrow "independent set of size at least θ "
- literal $l_{ij} \Rightarrow$ vertices $v_{ij} \in V^f$
- "all clauses true" $\Rightarrow \theta^f = m$
- "literal conflicts" \Rightarrow conflict edges.

$$\forall i: \ l_{jk} = "z_i" \text{ and } l_{j'k'} = "\bar{z}_i" \Rightarrow (v_{jk}, v_{j'k'}) \in E^f$$

• "one representative per clause" \Rightarrow clause edges.

 $\forall j: (v_{j1}, v_{j2}), (v_{j2}, v_{j3}), (v_{j3}, v_{j1}) \in E^f$

Example:

$$f(\mathbf{z}) = (z_1 \lor z_2 \lor z_3) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_2 \lor z_4)$$

Runtime Analysis: linear time (one vertex per literal.)

Part II: reverse certificate construction

construct assignment ${\bf z}$ from S^f

(if (V^f, E^f) has indep. set S^f size $\geq \theta^f = m$ then f is satisfiable.)

- 1. For each z_r :
 - (a) if exists vertex in S^f labeled by " z_r "

set $z_r = T$

(b) else

set $z_r = F$

Claim: if vertex in S is labeled by " \overline{z}_r " then no vertices in S are labeled by " z_r " and z_r is set to False.

(because of conflict edge between vertex labeled " \bar{z}_r " and all vertices labeleed " z_r ".)

Claim: S^f independent and $|S^f| \ge m \Rightarrow f(\mathbf{z}) = T$:

• S has |S| = m

 $\Rightarrow S$ has one vertex per clause.

• for clause i and $v_{ij}inS$:

if l_{ij} not negated, then z_i is true (by construction)

if l_{ij} is negated then z_i is false (by claim)

• So $f(\mathbf{z}) = T$.

Part III: forward certificate construction

construct independent set S^f from \mathbf{z}

(if f is satisfiable then (V^f, E^f) has indep set size $\geq m = \theta^f$.)

- 1. let S' be nodes in (V^f, E^f) corresponding to true literals.
- 2. if more than one vertex in S' in same triangle drop all but one.

 $\Rightarrow S^f.$

Claim: \mathbf{z} satisfies $f(\mathbf{z}) \Rightarrow S^f$ independent and $|S^f| \ge m$

• all clauses have true literal

 $\Rightarrow |S'| \ge m \text{ and } |S| = m$

- for all $u, v \in S$,
 - u & v not in same triangle.
 - $-l_u$ and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in (V^f, E^f) .
 - so S^f is independent.