
EECS 336: Lecture 9: Introduction to
Algorithms
Reductions, Decision Problems

Reading: “guide to reductions”

Last Time:

• max flow alg / ford-fulkerson

• duality: max flow = min cut

Today:

• reductions (cont)

• tractability and intractability

• decision problems

Exercise 9.1: Matching to Flow

Setup: Recall Matching to Flow reduction:

Step 1:

i. connect s to each v ∈ A with capacity 1.

ii. connect t to each u ∈ B with capacity 1.

iii. add edges e ∈ E with capacity 1.

Step 2: compute (integral) max flow f

Step 3: matching M = e ∈ E : f(e) = 1

Question: Assuming network flow algorithm runs in
O(m′C ′) where C ′ =

∑
e out of s c(e) and m′ = |E|,

what is runtime of bipartite matching algorithm on
(A,B,E) with |A| = |B| = n vertices in each part and
|E| = m edges?

Reduction Illustrated

Problems Bipartite Matching Network Flow
Instance x = (A,B,E) yx = (V x, Ex, cx, sx, tx)
Solution M fx

Summary of Reduction
Def: X reduces to Y in polynomial time (notation:
X ≤P Y) if any instance of X can be solved in a poly-
nomial number of computational steps and a polyno-
mial number of calls to black-box that solves instances
of Y .

Note: to prove correctness of general reduction, must
show that correctness (e.g., optimality) of algorithm
for Y implies correctness of algorithm for X.

Def: one-call reduction maps instance of X to
instance of Y , solution of X to solution of Y . (also
called a Karp reduction)

Note: a one-call reduction gives two algorithms:

I. contruction of Y X instance from X instance.

II. construction of X solution from Y X solution
(with same value.)

Note: the proof of correctness of a one-call reduction
gives additional algorithm:

III. construction of Y X solution from X solution
(with same value.)

Note: Only need to consider Y X instance not general
X instance.

Theorem: reduction from “I and II” is correct if I,
II, and III are correct.

Proof:

• for instance x of X, let instance of yx of Y X be
outcome of I.

• II correct ⇒ OPT(x) ≥ OPT(yx).

• III correct ⇒ OPT(yx) ≥ OPT(x).

⇒ OPT(x) = OPT(yx).

⇒ output of reduction has value OPT(y).

1

Exercise 9.2: Perfect Matching

Setup:

• Consider the bipartite graph (A,B,E) with 100
vertices in each part, i.e., |A| = |B| = 100.

• Suppose this bipartite graph has a perfect match-
ing.

• Consider the reduction to network flow (were the
bipartite graph is converted into a network flow
instance).

Question:

Can you determine the value of the maximum flow in
the network flow instance?

a. Yes, it is 100.
b. No, but it is at most 100.
c. No, and it could be less than or more than 100.

Decision Problems

“problems with yes/no answer”

Def: A decision problem asks “does a feasible solu-
tion exist?”

Example: network flow in (V,E, c, s, t) with value
at least θ.

Example: perfect matching in a bipartite graph
(A,B,E).

Note: objective values for decision problem is 1 for
“yes” and 0 for “no”.

Note: II and III only need to check “yes” instances.

Note: If solution not needed then reduction is Step
I and proof is Steps II and III.

Theorem: perfect matching reduces to network flow
decision problem.

Note: Can convert optimization problem to decision
problem

Def: the decision problem Xd for optimization prob-
lem X has input (x, θ) = “does instance x of X have
a feasible solution with value at most (or at least) θ?”

Deciding is as hard as optimizing

Proof: (reduction via binary search)

• given

– instance x of X

– black-box A to solve Xd

• search(A,B) = find optimal value in [A,B].

– D = (A+B)/2

– run A(x,D)

– if “yes,” search(A,D)

– if “no,” search(D,B)

2

Reductions for Intractability
“reduce known hard problem Y to problem X to show
that X is hard”

Challenge: show problem X is intractable.

“there does not exist algorithm A that solves every
x ∈ X in polynomial time in |x|.”

Instead: show that solving X enables solving known
hard problem Y .

Proof by contradiction:

• assume X is tractable
• can solve Y from X
• so Y is tractable
• contradiction

Tractability and Intractability

Consequences of Y ≤p X :

1. if X can be solved in polynomial time then so
can Y .

Example: X = network-flow; Y =
bipartite matching.

2. if Y cannot be solved in polynomial time then
neither can X.

3

Reductions for Intractability
“reduce known hard problem Y to problem X to show
that X is hard”

Challenge: show problem X is intractable.

“there does not exist algorithm A that solves every
x ∈ X in polynomial time in |x|.”

Instead: show that solving X enables solving known
hard problem Y .

Proof by contradiction:

• assume X is tractable
• can solve Y from X
• so Y is tractable
• contradiction

Problem Y : 3-SAT

input: blooen formula f(z) =
∧m

j=1(lj1 ∨ lj2 ∨ lj3)

• literal ljk is variable “zi” or negation
“z̄i”

• “and of ors”

• e.g., f(z) = (z1 ∨ z̄2 ∨ z3) ∧ (z2 ∨ z̄5 ∨
z6) ∧ ...

output:

• “Yes” if assigment z with f(z) = T
exists

e.g., z = (T, T, F, T, F, ...)

• “No” otherwise.

Problem X: INDEP-SET

input: G = (V,E), k

ouput: “yes” if ∃S ⊂ V

• satisfying ∀v ∈ S, (u, v) /∈ E

• |S| ≥ θ

Reduction
Lemma: 3-SAT ≤p INDEP-SET

Part 1: forward instance construction

convert 3-SAT instance f into INDEP-SET instance
(V f , Ef , θf).

• goal: “at least one true literal per clause” ⇔
“independent set of size at least θ”

• literal lij ⇒ vertices vij ∈ V f

• “all clauses true” ⇒ θf = m

• “literal conflicts” ⇒ conflict edges.

∀i: ljk = “zi” and lj′k′ = “z̄i”⇒ (vjk, vj′k′) ∈ Ef

• “one representative per clause” ⇒ clause edges.

∀j: (vj1, vj2), (vj2, vj3), (vj3, vj1) ∈ Ef

Example:

f(z) = (z1 ∨ z2 ∨ z3) ∧ (z̄2 ∨ z̄3 ∨ z̄4) ∧ (z̄1 ∨ z̄2 ∨ z4)

v12 v22 v32

v11 v13 v21 v23 v31 v33︸ ︷︷ ︸
m clauses

Runtime Analysis: linear time (one vertex per lit-
eral.)

Part II: reverse certificate construction

construct assignment z from Sf

(if (V f , Ef) has indep. set Sf size ≥ θf = m then f
is satisfiable.)

1. For each zr:

(a) if exists vertex in Sf labeled by “zr”

set zr = T

4

(b) else

set zr = F

Claim: if vertex in S is labeled by “z̄r” then no
vertices in S are labeled by “zr” and zr is set to False.

(because of conflict edge between vertex labeled “z̄r”
and all vertices labeeleed “zr”.)

Claim: Sf independent and |Sf | ≥ m ⇒ f(z) = T :

• S has |S| = m

⇒ S has one vertex per clause.

• for clause i and vijinS:

if lij not negated, then zi is true (by construction)

if lij is negated then zi is false (by claim)

• So f(z) = T .

Part III: forward certificate construction

construct independent set Sf from z

(if f is satisfiable then (V f , Ef) has indep set size
≥ m = θf .)

1. let S′ be nodes in (V f , Ef) corrpesonding to true
literals.

2. if more than one vertex in S′ in same triangle
drop all but one.

⇒ Sf .

Claim: z satisfies f(z)⇒ Sf independent and |Sf | ≥
m

• all clauses have true literal

⇒ |S′| ≥ m and |S| = m

• for all u, v ∈ S,

– u & v not in same triangle.

– lu and lv both true

⇒ must not conflict

⇒ no (lu, lv) edge in (V f , Ef).

– so Sf is independent.

5

	EECS 336: Lecture 9: Introduction to Algorithms
	Reductions, Decision Problems

	Reduction Illustrated
	Summary of Reduction
	Exercise 9.2: Perfect Matching
	Decision Problems
	Deciding is as hard as optimizing

	Reductions for Intractability
	Tractability and Intractability

	Reductions for Intractability
	Problem Y: 3-SAT
	Problem X: INDEP-SET

	Reduction

