EECS 336: Lecture 9: Introduction to Algorithms

Reductions, Decision Problems

Reading: "guide to reductions"

Last Time:

- max flow alg / ford-fulkerson
- duality: max flow $=$ min cut

Today:

- reductions (cont)
- tractability and intractability
- decision problems

Exercise 9.1: Matching to Flow
Setup: Recall Matching to Flow reduction:
Step 1:
i. connect s to each $v \in A$ with capacity 1 .
ii. connect t to each $u \in B$ with capacity 1 .
iii. add edges $e \in E$ with capacity 1 .

Step 2: compute (integral) max flow f
Step 3: matching $M=e \in E: f(e)=1$
Question: Assuming network flow algorithm runs in $O\left(m^{\prime} C^{\prime}\right)$ where $C^{\prime}=\sum_{e \text { out of } s} c(e)$ and $m^{\prime}=|E|$, what is runtime of bipartite matching algorithm on (A, B, E) with $|A|=|B|=n$ vertices in each part and $|E|=m$ edges?

Reduction Illustrated

Problems	Bipartite Matching	Network Flow
Instance	$x=(A, B, E)$	$y^{x}=\left(V^{x}, E^{x}, c^{x}, s^{x}, t^{x}\right)$
Solution	M	f^{x}

Summary of Reduction

Def: X reduces to Y in polynomial time (notation: $X \leq_{P} Y$) if any instance of X can be solved in a polynomial number of computational steps and a polynomial number of calls to black-box that solves instances of Y.

Note: to prove correctness of general reduction, must show that correctness (e.g., optimality) of algorithm for Y implies correctness of algorithm for X.

Def: one-call reduction maps instance of X to instance of Y, solution of X to solution of Y. (also called a Karp reduction)

Note: a one-call reduction gives two algorithms:
I. contruction of Y^{X} instance from X instance.
II. construction of X solution from Y^{X} solution (with same value.)

Note: the proof of correctness of a one-call reduction gives additional algorithm:
III. construction of Y^{X} solution from X solution (with same value.)

Note: Only need to consider Y^{X} instance not general X instance.

Theorem: reduction from "I and II" is correct if I, II, and III are correct.

Proof:

- for instance x of X, let instance of y^{x} of Y^{X} be outcome of I.
- II correct $\Rightarrow \mathrm{OPT}(x) \geq \mathrm{OPT}\left(y^{x}\right)$.
- III correct $\Rightarrow \mathrm{OPT}\left(y^{x}\right) \geq \mathrm{OPT}(x)$.
$\Rightarrow \operatorname{OPT}(x)=\mathrm{OPT}\left(y^{x}\right)$.
\Rightarrow output of reduction has value $\mathrm{OPT}(y)$.

Exercise 9.2: Perfect Matching

Setup:

- Consider the bipartite graph (A, B, E) with 100 vertices in each part, i.e., $|A|=|B|=100$.
- Suppose this bipartite graph has a perfect matching.
- Consider the reduction to network flow (were the bipartite graph is converted into a network flow instance).

Question:

Can you determine the value of the maximum flow in the network flow instance?
a. Yes, it is 100 .
b. No, but it is at most 100 .
c. No, and it could be less than or more than 100 .

Decision Problems

"problems with yes/no answer"
Def: A decision problem asks "does a feasible solution exist?"

Example: network flow in (V, E, c, s, t) with value at least θ.

Example: perfect matching in a bipartite graph (A, B, E).
Note: objective values for decision problem is 1 for "yes" and 0 for "no".

Note: II and III only need to check "yes" instances.
Note: If solution not needed then reduction is Step I and proof is Steps II and III.

Theorem: perfect matching reduces to network flow decision problem.
Note: Can convert optimization problem to decision problem
Def: the decision problem X_{d} for optimization problem X has input $(x, \theta)=$ "does instance x of X have a feasible solution with value at most (or at least) θ ?"

Deciding is as hard as optimizing

Proof: (reduction via binary search)

- given
- instance x of X
- black-box \mathcal{A} to solve X_{d}
- $\operatorname{search}(A, B)=$ find optimal value in $[A, B]$.
- $D=(A+B) / 2$
$-\operatorname{run} \mathcal{A}(x, D)$
- if "yes," search (A, D)
- if "no," search (D, B)

Reductions for Intractability

"reduce known hard problem Y to problem X to show that X is hard"

Challenge: show problem X is intractable.
"there does not exist algorithm A that solves every $x \in X$ in polynomial time in $|x|$."
Instead: show that solving X enables solving known hard problem Y.

Proof by contradiction:

- assume X is tractable
- can solve Y from X
- so Y is tractable
- contradiction

Tractability and Intractability

Consequences of $Y \leq_{p} X$:

1. if X can be solved in polynomial time then so can Y.

Example: $X=$ network-flow; $Y=$ bipartite matching.
2. if Y cannot be solved in polynomial time then neither can X.

Reductions for Intractability

"reduce known hard problem Y to problem X to show that X is hard"

Challenge: show problem X is intractable.
"there does not exist algorithm A that solves every $x \in X$ in polynomial time in $|x|$."

Instead: show that solving X enables solving known hard problem Y.

Proof by contradiction:

- assume X is tractable
- can solve Y from X
- so Y is tractable
- contradiction

Problem Y: 3-SAT

input: blooen formula $f(\mathbf{z})=\bigwedge_{j=1}^{m}\left(l_{j 1} \vee l_{j 2} \vee l_{j 3}\right)$

- literal $l_{j k}$ is variable " z_{i} " or negation " \bar{z}_{i} "
- "and of ors"
- e.g., $f(\mathbf{z})=\left(z_{1} \vee \bar{z}_{2} \vee z_{3}\right) \wedge\left(z_{2} \vee \bar{z}_{5} \vee\right.$ $\left.z_{6}\right) \wedge \ldots$
output:
- "Yes" if assigment \mathbf{z} with $f(\mathbf{z})=T$ exists
e.g., $\mathbf{z}=(T, T, F, T, F, \ldots)$
- "No" otherwise.

Problem X: INDEP-SET

input: $G=(V, E), k$
ouput: "yes" if $\exists S \subset V$

- satisfying $\forall v \in S,(u, v) \notin E$
- $|S| \geq \theta$
\qquad

Reduction

Lemma: 3 -SAT $\leq{ }_{p}$ INDEP-SET
Part 1: forward instance construction
convert 3-SAT instance f into INDEP-SET instance $\left(V^{f}, E^{f}, \theta^{f}\right)$.

- goal: "at least one true literal per clause" \Leftrightarrow "independent set of size at least θ "
- literal $l_{i j} \Rightarrow$ vertices $v_{i j} \in V^{f}$
- "all clauses true" $\Rightarrow \theta^{f}=m$
- "literal conflicts" \Rightarrow conflict edges.
$\forall i: l_{j k}=" z_{i} "$ and $l_{j^{\prime} k^{\prime}}=" \bar{z}_{i} " \Rightarrow\left(v_{j k}, v_{j^{\prime} k^{\prime}}\right) \in E^{f}$
- "one representative per clause" \Rightarrow clause edges.
$\forall j:\left(v_{j 1}, v_{j 2}\right),\left(v_{j 2}, v_{j 3}\right),\left(v_{j 3}, v_{j 1}\right) \in E^{f}$

Example:

$f(\mathbf{z})=\left(z_{1} \vee z_{2} \vee z_{3}\right) \wedge\left(\bar{z}_{2} \vee \bar{z}_{3} \vee \bar{z}_{4}\right) \wedge\left(\bar{z}_{1} \vee \bar{z}_{2} \vee z_{4}\right)$

Runtime Analysis: linear time (one vertex per literal.)

Part II: reverse certificate construction construct assignment \mathbf{z} from S^{f}
(if (V^{f}, E^{f}) has indep. set S^{f} size $\geq \theta^{f}=m$ then f is satisfiable.)

1. For each z_{r} :
(a) if exists vertex in S^{f} labeled by " z_{r} " set $z_{r}=T$
(b) else

$$
\text { set } z_{r}=F
$$

Claim: if vertex in S is labeled by " \bar{z}_{r} " then no vertices in S are labeled by " z_{r} " and z_{r} is set to False.
(because of conflict edge between vertex labeled " \bar{z}_{r} " and all vertices labeeleed " z_{r} ".)
Claim: S^{f} independent and $\left|S^{f}\right| \geq m \Rightarrow f(\mathbf{z})=T$:

- S has $|S|=m$
$\Rightarrow S$ has one vertex per clause.
- for clause i and $v_{i j} i n S$:
if $l_{i j}$ not negated, then z_{i} is true (by construction)
if $l_{i j}$ is negated then z_{i} is false (by claim)
- So $f(\mathbf{z})=T$.

Part III: forward certificate construction
construct independent set S^{f} from z
(if f is satisfiable then $\left(V^{f}, E^{f}\right)$ has indep set size $\geq m=\theta^{f}$.)

1. let S^{\prime} be nodes in $\left(V^{f}, E^{f}\right)$ corrpesonding to true literals.
2. if more than one vertex in S^{\prime} in same triangle drop all but one.

$$
\Rightarrow S^{f}
$$

Claim: z satisfies $f(\mathbf{z}) \Rightarrow S^{f}$ independent and $\left|S^{f}\right| \geq$ m

- all clauses have true literal
$\Rightarrow\left|S^{\prime}\right| \geq m$ and $|S|=m$
- for all $u, v \in S$,
$-u \& v$ not in same triangle.
$-l_{u}$ and l_{v} both true
\Rightarrow must not conflict
\Rightarrow no $\left(l_{u}, l_{v}\right)$ edge in $\left(V^{f}, E^{f}\right)$.
- so S^{f} is independent.

