
EECS 336: Lecture 5: Introduction to
Algorithms
Dynamic Programming (cont) Bellman-Ford

Reading: 6.4-6.8

“guide to dynamic programming” (Canvas)

Discussion: Peer grading

Last Time:

• Dynamic Programming (a framework)

• Integer Knapsack

Today:

• Sequence Alignment.

• Shortest Paths.

Sequence Alignment
“align sequences to optimize quality of alignment”

input:

• a = a1, . . . , an sequence of n symbols.

• b = b1, . . . , bm sequence of m symbols.

• αij = cost of aligning ai and bj

• δ = gap cost.

output: alignment with minimum total cost.

example:

• a = “cab”;
• b = “car”;
• α = 0 for match, 1 for mismatch
• δ = 0

OPT = . . .

Framework

I. identify subproblem in English

OPT(i, j) = “minimal number of symbols to
delete to align ai, . . . , an and bj , . . . , bm”

II. specify subproblem recurrence (argue correct-
ness)

OPT(i, j) = min{αij + OPT(i+ 1, j + 1),
δ + OPT(i, j + 1),
δ + OPT(i+ 1, j)}

III. solve the original problem from subproblems

Optimal Sequence Alignment = OPT(1, 1)

IV. identify base case

OPT(i,m+ 1) = δ(n− i),

OPT(n+ 1, j) = δ(m− j).

V. write iterative DP.

VI. runtime analysis.

O(nm) + initialization = O(nm)

VII. implement in your favorite language (Python!)

1

Shortest Paths with Negative Weights
“e.g., currency exchange: nodes are currencies, path
weights are exchange rates, minimize produce of path
weights.”

Note: to minimize product of path weights, can
minimize sum of logs of path weights.

Example: r1r2 = 2log2 r12log2 r2 = 2log2 r1+log2 r2

Note: if r ≤ 1 then log r is negative.

Example:

a

s t

b

21

-25

3

Try Dynamic Programming

OPT(v)

= shortest path from v to t.

= minu∈N(v)[c(v, u)︸ ︷︷ ︸
weight

+OPT(u)].

Example:

a

s t

b

Subproblems have cyclic dependencies!

Imposing measure of progress

“parameterize subproblems to keep track of progress”

Lemma: if G has no negative cycles, then minimum
cost path is simple (i.e., does not repeat nodes);
therefore, it has at most n− 1 edges.

Proof: (contradiction)

• let P be the min-cost path with fewest number
of edges.

• suppose (for the contraction) that P is not simple.

⇒ P repeats as vertex v.

• no negative cycle ⇒ path from v to v non-
negative.

⇒ can “splice out” cycle and not increase
length.

⇒ new path has fewer edges than p.

Idea: if simple path goes s v → u t then u-t
path has one fewer edge than v-t path.

Part I: identify subproblem in english

OPT(v, k)

= “length of shortest path from v to t with
at most k edges.”

Part II: write recurrence

OPT(v, k)

= minu∈N(v)[c(v, u) + OPT(u, k − 1)]

Correctness: lemma + induction.

Part III: solve original problem

• minimum cost path = OPT(s, n− 1).

Part IV: base case

• for all k: OPT(t, k) = 0

• for all v 6= t: OPT(v, 0) =∞.

2

Part V: iterative DP

Algorithm: Bellman-Ford

1. base case:

for all k: OPT[t, k] = 0

for all v 6= t: OPT[v, 0] =∞.

2. for k = 1 . . . n− 1: for all v:

OPT[v, k] = minu∈N(v) c(v, u) +OPT[u, k−
1].

3. return OPT[s, n− 1].

Example:

a

s t

b

21

-25

3

0 1 2 3
s ∞ ∞ 3 2
a ∞ 2 1 1
b ∞ -2 -2 -2
t 0 0 0 0

Part VI: Runtime

T (n,m) =
n2︷ ︸︸ ︷

"size of table"×
n︷ ︸︸ ︷

"cost per entry"

(better accounting: T (n,m) = O(n2 +nm) = O(nm))

3

	EECS 336: Lecture 5: Introduction to Algorithms
	Dynamic Programming (cont) Bellman-Ford

	Sequence Alignment
	Framework

	Shortest Paths with Negative Weights
	Try Dynamic Programming
	Imposing measure of progress
	Part I: identify subproblem in english
	Part II: write recurrence
	Part III: solve original problem
	Part IV: base case
	Part V: iterative DP
	Part VI: Runtime

