
EECS 336: Lecture 18: Introduction to
Algorithms
Online Algorithms ski renter, secretary

Last Time:

• pseudo polynomial time

• Knapsack PTAS

Today:

• online algorithms

• ski renter

• secretary

Approximation Algorithms

“show algorithm’s solution is always close to optimal
solution”

Challenge: for hard problems optimal solution is
complex.

Approach:

1. relax constraints and solve relaxed optimally.

2. fix violated constraints.

3. show “fixed solution” is close to “relaxed solution”

1



Algorithms Flow Chart

[model problem]

<does greedy work?>

<similar to another problem?> [reduction]

<find subproblem> <NP hard?>

[problem solved]

[repeat][approximate]

<independent or dependent?>

[divide & conquer] [dynamic prog]

[problem solved]

no [problem solved]

yes

yes

no

no

noyes
yes

indep
dep

Course topics
• Dynamic Programming

• Reductions

– network flow

– NP hardness

• Approximation Algorithms

– Greedy algorithms

2



Online Algorithms
“algorithms that must make decisions without full
knowledge of input”

(e.g., if input is events over time, then algorithm
doesn’t know future)

Ski Renter

input:

• cost to buy skis: B.

• cost to rent skis: R.

• daily weather d1, ..., dn with di ={
1 if good weather
0 if bad weather

(let k =
∑

i di)

ouput: schedule for renting or buying skis.

online constraint: on day i do not know di+1, ..., dn.

Note: optimality is impossible because don’t know
future.

Idea: approximate “optimal offline” algorithm

Algorithm: OPT (offline)

• if kR < B, buy on day 1.

• else, rent on each good day.

Performance: OPT = min(kR,B).

Def: an online algo is β-competitive with optimal
offline alg, OPT, if on all inputs x for X,

• minimization: ALG(x) ≤ βOPT(x).

• maximization: ALG(x) ≥ OPT(x)/β.

Challenge:

• if we buy first day we ski:

• for d = (1, 0, 0, ..., 0)

• OPT = R; ALG = B � R

• if we rent each time we ski

• for d = (1, 1, 1, ..., 1)

• OPT = B; ALG = Rn� B

Algorithm: “Rent to buy”

“rent unless total rental cost would exceed buy cost,
then buy”

Example: R = 1, B = 3

d 1 0 1 1 1 0 1 1 ...
Alg R / R R B / 0 0 ...

ALG = 3R+B︸ ︷︷ ︸
≤2B

,OPT = B

Theorem: ALG ≤ 2OPT (Alg is 2-competitive)

Proof:

case 1: kR ≤ B

• Alg: kR

• OPT: kR

⇒ ALG = OPT ≤ 2OPT.

case 2: kR > B

• Alg: total rental + B ≤ 2B

• OPT: B

⇒ ALG ≤ 2OPT.

Note: competitive analysis gives very strong approx-
imation result.

3



Secretary Problem
input:

• sequence of candidates 1, ..., n.

• ordering on candidate qualities.

output:

• “hire” / “no hire” decisions.

• to hire best candidate.

online constraint: must make hire / no hire decision
for i before seeing i+ 1, ..., n.

Fact: “optimal offline” always hires best secretary.

Claim: no deterministic algorithm approximates op-
timal offline.

Proof: two candidates

case 1: Alg hires 1

• 2 is better.

case 2: Alg doesn’t hire 1

• 1 is better.

Idea: consider randomized algorithms.

(maximize probability of hiring the best candidate.)

Claim: randomized algorithm is n-competitive of-
fline.

Proof:

• Alg: for all i, pick ith secretary with probability
1/n.

• Alg is right with probability 1/n.

• OPT is always right.

=⇒ n-competitive.

Claim: no algorithm hires best candidate with prob-
ability Ω(1/n).

Idea: consider randomized inputs.

Assumption: candidates arrive in a uniformly ran-
dom order.

Example: n = 3

1 2 3 1 3 2 3 1 2 2 1 3 2 3 1 3 2 1
(a) (a) (b) (b) (b)

Two algs for example:

(a) take i candidate for some i

⇒ Pr[success] = 1/3

(b) look at 1st, condition choice of 2nd or 3rd.

• if 2nd better than 1st, hire 2nd

• else, hire 3rd.

⇒ Pr[success] = 1/2

Algorithm: Secretary Alg

• interview k candidates but make no offers

• hire next secretary that is better than any of first
k.

Lemma: For k = n/2 alg is 4-competitive.

Proof:

• hire best when 2nd best in first half and 1st best
in second half.

• Recall: Pr[A&B] = Pr[A | B]Pr[B].

• Pr[2nd best in first half] = 1/2

• Pr[1st best in second half | 2nd best in first half]
= n/2

n−1 ≥ 1/2

⇒ Pr[hire best]

≥ Pr[2nd in 1st 1/2]Pr[1st in 2nd 1/2 | 2nd
in 1st 1/2] ≥ 1/4.

Question: what is best k?

Theorem: for k = 1/e alg is e-competitive and this
is best possible.

4


	EECS 336: Lecture 18: Introduction to Algorithms
	Online Algorithms ski renter, secretary
	Approximation Algorithms

	Algorithms Flow Chart
	Course topics
	Online Algorithms
	Ski Renter
	Secretary Problem


