EECS 336: Lecture 17: Introduction to Def: A is a β -approximation if the value of its solution Algorithms

Approximation Algorithms approximation, metric TSP, knapsack

Reading: 11.8

Last Time:

- approximation
- metric TSP
- knapsack

Today:

- pseudo polynomial time
- knapsack $(1 + \epsilon)$ approx.

is at least OPT/β (maximization problems)

Recall: knapsack problem

input:

- n objects
- size s_i (non-negative real number)
- values v_i
- capacity C.

output: subset S that

- fits: $\sum_{i \in S} s_i \leq C$
- maximizes values: $\sum_{i \in S} v_i$.

Recall: Integer Knapsack Dynamic Program

" s_i s and C are integers"

Step I: identify subproblem in English

OPT(i, D)

= "value of optimal size D knapsack on $\{i,...,n\}$ "

Step II: write recurrence

OPT(i, D)

$$= \max(\underbrace{v_i + \mathrm{OPT}(i+1, D-s_j)}_{\text{if } s_i \leq D}), \mathrm{OPT}(i+1, D)$$

Step VI: runtime

$$T(n, C) = O(\# \text{ of subprobs} \times \text{cost per subprob})$$

= $O(nC)$.

Pseudo-polynomial Time

"polynomial if numbers in input are written in unary (not binary)"

Thm: Integer Knapsack DP is pseudo polynomial time

Polynomial Time Approximation Scheme (PTAS)

"for any constant ϵ , get $(1+\epsilon)$ -approximation algorithm in polynomial time."

Note: often pseudo-polynomial time alg can be converted into PTAS by rounding.

Knapsack PTAS

Goal: output $(1+\epsilon)$ -approximation to optimal knapsack value.

Idea: round so that numbers are integers in range from 0 to poly(n).

Recall: for old knapsack dynamic program, need sizes to be integer, but approximation would allow for rounding values not sizes.

Approach:

- 1. write new dynamic program that is pseudo-polynomial in values not capacity. $O(n^2 v_{\text{max}})$
- 2. divide values by $\epsilon v_{\rm max}/n$ and round up. (range from 0 to n/ϵ .)
- 3. solve dynamic program on rounded values.

Value-based Knapsack DP

Idea: instead of maximizing values, let's minimize size.

Part I: Subproblem

 $\operatorname{MinSize}(i, V) = \text{smallest total size of subset of } \{i, ..., n\} \text{ with total value at least } V.$

Part II: Recurrence

 $MinSize(i, V) = \max\{s_i + MinSize(i + 1, \max\{V - v_i, 0\}), MinSize(i + 1, V)\}$

Part III: Invocation

- 1. $V \leftarrow \sum_{i} v_i$
- 2. while MinSize(1, V) > C

$$V \leftarrow V - 1$$

3. output V.

Part IV: Base case

$$\operatorname{MinSize}(n+1,V) = \begin{cases} 0 & \text{if } V = 0 \\ \infty & \text{o.w.} \end{cases}$$

Theorem: ALG has pseudo-polynomial runtime $O(n^2v_{\text{max}})$ if v_i s are integer,

Proof: table size = $n \times \sum_{i} v_i \le n \times nv_{\text{max}}$

Polynomial Time Approximation Scheme

Algorithm: Knapsack $(1 + \epsilon)$ -approx

- 1. round v_i up to multiple of $\epsilon v_{\text{max}}/n \to \tilde{v}_i$
- 2. divide \tilde{v}_i by $\epsilon v_{\text{max}}/n \to \hat{v}_i$ (integer)
- 3. solve integral knapsack on $\hat{v}_1, ..., \hat{v}_n \to S$
- 4. output $\max(v_{\max}, \sum_{i \in S} v_i)$

Correctness

Lemma: ALG is optimal for \hat{v}_i s and \tilde{v}_i s.

Proof: via correctness of DP.

Lemma: ALG is polynomial in n and $1/\epsilon$

Proof:

- $\hat{v}_{\max} = v_{\max} \times \frac{n}{\epsilon v_{\max}} = n/\epsilon$
- runtime is $O(n^2 v_{\text{max}}) = O(n^3/\epsilon)$.

Lemma: ALG is $(1 + \epsilon)$ -approx for v_i s.

Proof:

1. lower bound on OPT

$$\begin{split} OPT &= \sum_{i \in S^*} v_i \qquad \text{(OPT's actual values)} \\ &\leq \sum_{i \in S^*} \tilde{v}_i \quad \text{(OPT's rounded values)} \\ &\leq \sum_{i \in S} \tilde{v}_i \quad \text{(ALG's rounded values)} \end{split}$$

Last step by optimality of ALG on $\tilde{v}s$ and $\hat{v}s$.

- 2. upper bound on algorithm
 - bound 1:

$$\begin{split} ALG &\geq \sum_{i \in S} v_i & \text{(ALG's actual values)} \\ &= \sum_{i \in S} \tilde{v}_i - \sum_{i \in S} \underbrace{(\tilde{v}_i - v_i)}_{\leq \epsilon v_{\max}/n} \\ &\geq \sum_{i \in S} \tilde{v}_i - n \times \epsilon v_{\max}/n \\ &= \sum_{i \in S} \tilde{v}_i - \epsilon v_{\max} \end{split}$$

- bound 2: ALG $\geq v_{\text{max}}$.
- 3. combine:

$$\begin{split} \text{ALG} &\geq \sum_{i \in S} \tilde{v}_i - \epsilon \underbrace{v_{\text{max}}}_{\leq \text{ALG}} \\ &\geq \text{OPT} - \epsilon \text{ALG} \end{split}$$

So $(1 + \epsilon)ALG > OPT$.

QED

Complexity of Approximation

Def: APX = class of problems with constants approximations

Def: PTAS = class of problems with PTASs.

DRAW PICTURE of

$$P \le PTAS \le APX \le NP$$