EECS 336: Lecture 17: Introduction to Def: Aisa S-approximation if the value of its solution
Algorithms is at least OPT/f (maximization problems)

Recall: knapsack problem
Approximation Algorithms approximation,

metric TSP, knapsack input:

e n objects
Reading: 11.8
e size s; (non-negative real number)
Last Time:
o values v;
e approximation
e capacity C.
e metric TSP
output: subset S that
o knapsack
o fits:) .98 <C
Today:
 maximizes values:). ¢ v;.
e pseudo polynomial time)
Recall: Integer Knapsack Dynamic Program
o knapsack (1 + €) approx.
“s;s and C' are integers”

Step I: identify subproblem in English

OPT(i, D)

)

= “value of optimal size D knapsack on {,...,n}

Step II: write recurrence

OPT(i, D)
= max(v; + OPT(i +1,D — s;),OPT(i + 1, D)

if s;<D

Step VI: runtime

T(n,C) = O(# of subprobs x cost per subprob)
= O0(nC).

Pseudo-polynomial Time

“polynomial if numbers in input are written in unary
(not binary)”

Thm: Integer Knapsack DP is pseudo polynomial
time.

Polynomial Time Approxima-
tion Scheme (PTAS)

“for any constant €, get (1+€)-approximation algorithm
in polynomial time.”

Note: often pseudo-polynomial time alg can be con-
verted into PTAS by rounding.

Knapsack PTAS
Goal: output (1+ €)-approximation to optimal knap-
sack value.

Idea: round so that numbers are integers in range
from 0 to poly(n).

Recall: for old knapsack dynamic program, need
sizes to be integer, but approximation would allow for
rounding values not sizes.

Approach:

1. write new dynamic program that is pseudo-
polynomial in values not capacity. O(n?vpax)

2. divide values by €vpyax/n and round up. (range
from 0 to n/e.)

3. solve dynamic program on rounded values.

Value-based Knapsack DP

Idea: instead of maximizing values, let’s minimize
size.

Part I: Subproblem

MinSize(i, V) = smallest total size of subset of
{i,...,n} with total value at least V.

Part II: Recurrence

MinSize(i, V) = max{s; + MinSize(i + 1, max{V —
v, 0}), MinSize(i + 1,V)}

Part III: Invocation
LV v
2. while MinSize(1,V) > C
VeV-1
3. output V.
Part IV: Base case
0 ifVv=0

oo O0.W.

MinSize(n + 1,V) = {
Theorem: ALG has pseudo-polynomial runtime
O(n?vmay) if v;s are integer,

Proof: table size = n x >, v; <N X NUpax

Polynomial Time Approximation Scheme

Algorithm: Knapsack (1 + €)-approx
1. round v; up to multiple of evyax/n — v;
2. divide ¥; by €vmax/n — 0; (integer)
3. solve integral knapsack on 01, ..., 0, — S
4. output max(Vmax, Y _;cg Vi)
Correctness
Lemma: ALG is optimal for ;s and o;s.
Proof: via correctness of DP.
Lemma: ALG is polynomial in n and 1/e
Proof:

n

® Umax = Umax X = n/e

€Umax

° runtime iS O(HQUIUELX) = O(n3/€)

Lemma: ALG is (1 + €)-approx for v;s.
Proof:
1. lower bound on OPT

(OPT’s actual values)

1€S*

< Z 9; (OPT’s rounded values)
1€S*

< Z 9; (ALG’s rounded values)
€S

Last step by optimality of ALG on s and
Us.

2. upper bound on algorithm

¢ bound 1:
ALG > v,
=
=) 0i—) (ti—v)

<€Vmax/n

> E 0; — N X EVppax /N

€S

= E V; — €Umax

€S

e bound 2: ALG > v.x-

3. combine:

ALGzZﬁi—e@

=
<ALG
>OPT
> OPT — €ALG

So (1+¢)ALG > OPT.
QED

Complexity of Approximation

Def: APX = class of problems with constants ap-

proximations
Def: PTAS = class of problems with PTASs.
DRAW PICTURE of

P<PTAS<APX < NP

(ALG’s actual values)

	EECS 336: Lecture 17: Introduction to Algorithms
	Approximation Algorithms approximation, metric TSP, knapsack
	Step I: identify subproblem in English
	Step II: write recurrence
	Step VI: runtime

	Pseudo-polynomial Time
	Polynomial Time Approximation Scheme (PTAS)
	Knapsack PTAS
	Value-based Knapsack DP
	Polynomial Time Approximation Scheme
	Complexity of Approximation

