EECS 336: Lecture 14: Introduction to Greedy Algorithms Algorithms

Greedy Algorithms: Interval Scheduling

Reading: 4.1

Last Time:

• CIRCUIT-SAT \leq_p LE3-SAT \leq_p 3-SAT

Today:

- Greedy Algorithms
- Interval Scheduling

- build solution in steps.
- each step myopically optimal
- hard part: prove final solution is optimal

Question: For what problems are greedy algorithms optimal?

Exercise 14.2: Greedy Scheduling

Setup: Consider scheduling jobs:

- job 1 needs to run from time 1 to 2
- job 2 needs to run from time 1 to 4
- job 3 needs to run from time 3 to 6
- job 4 needs to run from time 5 to 6

But only one job can run one job at a time, e.g., you can run both 1 and 3 for but you cannot run both 1 and 2 (since they overlap at times 1 and 2).

Question:

• What is the maximum number of jobs that can be simultaneously scheduled?

Interval Scheduling

"sharing a single resource"

- *n* jobs
- one machine
- requests: job *i* needs machine between s(i) and f(i).

Goal: schedule to maximize # of jobs scheduled.

Examples: Greedy by ...

• "start time"

---- --- --- ---

• "smallest size"

• "fewest incompatibilities"

---- ---

Note: important to be able to find counterexamples quickly.

Greedy Algorithm for Interval Scheduling

Idea: scheduling the earliest finish time first, leave the least constraint on remaining schedule.

Def: jobs i and j are

- incompatible if $[s(i), f(i)] \lor [s(j), f(j)] \neq \emptyset$
- otherwise **compatible**.
- set S is compatible if all $i, j \in S$ are compatible.

Examples: incompatible jobs

----- or ----- or -----

Algorithm: Greedy by Min. Finish Time

1. $S = \emptyset$

- 2. Sort jobs by increasing finish time.
- 3. For each job j (in sorted order):
 - if j if compatible with S

- schedule: $j: S \leftarrow S \cup \{j\}$

• else discard j

Analysis

Runtime

$$T(n) \underbrace{\leq n \log n}_{\text{sort}} + \sum_{j=0}^{\text{check compatibility}} \sum_{j=1}^{j} j$$
$$\approx n \log n + n^2$$
$$= O(n^2).$$

Idea: Job j in alg. is compatible if it is compatible with last scheduled job.

$$T(n) = n \log n + n$$
$$= \Theta(n \log n)$$

Exercise 14.1: Scheduling, Revisited

Setup: Consider running the greedy algorithm to schedule jobs:

- job 1 needs to run from time 1 to 2
- job 2 needs to run from time 1 to 4
- job 3 needs to run from time 3 to 6
- job 4 needs to run from time 5 to 6

(Recall: one job can run one job at a time.)

Question:

• Which jobs are scheduled?

Correctness

"schedule is compatible and optimal"

Lemma 1: schedule of algorithm is compatible

Proof: (by induction, straightfoward)

Def:

- let $i_1, ..., i_k$ be jobs scheduled by greedy
- let $j_1, ..., j_m$ be jobs scheduled by OPT

Goal: show
$$k = m$$
.

Approach: "Greedy Stays Ahead"

Lemma 2: for $r \leq k, f(i_r) \leq f(j_r)$

Proof: (induction on r)

base case: r = 0

- add dummy job 0 with $s(0) = f(0) = -\infty$
- only change: OPT and GREEDY schedule dummy
- so $f(i_0) = f(j_0)$

inductive hypothesis: $f(i_r) \leq f(j_r)$

inductive step:

- Let I = {jobs starting after f(i_r)}
 J = {jobs starting after f(j_r)}
- IH $\implies J \subseteq I$
- GREEDY $\implies f(i_{r+1}) = \min_{j \in I} f(j)$ $\leq \min_{j \in J} f(j)$ $\leq f(j_{r+1})$

Theorem: Greedy alg. is optimal

Proof: (by contradiction)

- OPT has job j_{k+1} but greedy terminates at k.
- lemma 2 (with r = k)

$$\implies f(i_k) \le f(j_k)$$
 (1)

• j_{k+1} is compatible with j_k

$$\implies f(j_k) \le s(k_{k+1})$$
 (2)

• (1) & (2)

$$\implies f(i_k) \le s(j_{k+1})$$

 $\implies j_{k+1} \text{ is compatible with } i_k$

 \implies alg doesn't terminate at k

Greedy by Value

"to pick a *feasible* set with maximum total value"

Algorithm: Greedy-by-Value

1. $S = \emptyset$

- 2. Sort elts by decreasing value.
- 3. For each elt e (in sorted order):

if $\{e\} \cup S$ is feasible

add e to ${\cal S}$

else discard e.

Minimum Spanning Tree

"maintaining minimal connectivity in a network, e.g., for broadcast"

input:

- graph G = (V, E)
- costs c(e) on edges $e \in E$

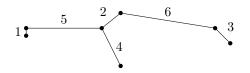
output: spanning tree with minimum total cost.

Def: a spanning tree of a graph G = (V, E) is $T \subseteq E$ s.t.

- (V, T) is connected.
- (V,T) is acyclic.

Note: Greedy-by-Value = Kruskal's Alg

Example:



Runtime

 $\Theta(m \log n)$

- $\Theta(m \log n)$ to sort.
- check connectivity with *union-find* data structure

amortized $O(\log^* n)$ runtime per operation.

(recall
$$l = \log^* n \Leftrightarrow n = \underbrace{2^{2^2}}_{l \text{ times}}$$
)

total $O(m \log^* n)$ runtime.

Correctness

"output is tree and has minimum cost"

Goal: understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.

Proof: Induction.

Lemma 2: if G is connected, Greedy outputs a tree.

Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Approach: "greedy stays ahead"

Proof: (by contradiction of first mistake)

- Greedy and OPT have n-1 edges (Fact 1)
- Let $I = \{i_1, ..., i_{n-1}\}$ be elt's of Greedy. (in order)
- Assume for contradiction: c(I) > c(J)
- Let r be first index with $c(j_r) < c(i_r)$
- Let $I_{r-1} = \{i_1, ..., i_{r-1}\}$
- |I_{r-1}| < |J_r| & Augmentation Lemma
 ⇒ exists j ∈ J_r \ I_{r-1}
 such that I_{r-1} ∪ {j} is acyclic.
- Suppose j considered after $i_k \ (k \le r-1)$
- $I_k \subseteq I_{r-1}$ $\Rightarrow I_k \cup \{j\} \subseteq I_{r-1} \cup \{j\}$
- *I_{r-1}* ∪ {*j*} acyclic & Fact 2
 ⇒ all subsets are acyclic
 ⇒ *I_k* ∪ {*j*} acyclic
 - $\Rightarrow j$ should have been added.

Structural Observations about Forests

Def: G' = (V, E') is a subgraph of G = (V, E) if $E' \subseteq E$.

Def: An acyclic undirected graph is a forest

Fact 1: and MST on n vertices has n - 1 edges.

Lemma 1: If G = (V, F) is a forest with m edges then it has n - m connected components.

Proof: Induction (on number of edges)

case case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m + 1.

- IH $\implies n m$ CCs
- add new edges.
- must not create cycle
- \Rightarrow connects two connected components.
- \Rightarrow these 2 CCs become 1 CC.

 $\Rightarrow n - m - 1$ CCs.

QED

Lemma 2: (Augmentation Lemma) If $I, J \subset E$ are forests and |I| < |J| then exists $e \in J \setminus I$ such that $I \cup \{e\}$ is a forest.

Proof:

Lemma 1

 \Rightarrow # CCs of (V, I) > # CCs of $(V, J) \ge$ # CCs of $(V, I \cup J)$

 \Rightarrow add elements $e \in J$ to I until # CCs change.

[PICTURE]

 $\Rightarrow (V, I \cup \{e\})$ is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic