Week 9 Questions Student: FIRSTNAME LASTNAME

Lecture 16

- 1. (O 7.24) This problem is similar to Exercise 7.23 in that it shows you may assume that Dictator-vs.-No-Notables tests are testing "smoothed" functions of the form $T_{1-\delta}h$ for $h: \{-1,1\}^n \to [-1,1]$, so long as you are willing to lose $O(\delta)$ in the probability that dictators are accepted.
 - (a) Let U be an (α, β) -Dictator-vs.-No-Notables test using an arity-r predicate set Ψ (over domain $\{-1,1\}$) which works under the assumption that the function $f: \{-1,1\}^n \to [-1,1]$ being tested is of the form $T_{1-\delta}h$ for $h: \{-1,1\}^n \to [-1,1]$. Modify U as follows: whenever it is about to query f(x), let it draw $y \sim N_{1-\delta}(x)$ and use f(y) instead. Call the modified test U'. Show that the probability U' accepts an arbitrary $h: \{-1,1\}^n \to [-1,1]$ is equal to the probability U accepts $T_{1-\delta}h$.

Solution:

(b) Prove that U' is an $(\alpha, \beta - r\delta/2)$ -Dictator-vs.-No-Notables test using predicate set Ψ .

Solution:

2. (O 7.26) Show that when using Theorem 7.40, it suffices to have a "Dictators-vs.-No-Influentials test", meaning replacing $\operatorname{Inf}_{i}^{(1-\varepsilon)}[f]$ in Definition 7.37 with just $\operatorname{Inf}_{i}[f]$. (Hint: Exercise 7.24.)

Solution:

- 3. (O 7.28) In this problem you will show that Corollary 7.43 actually follows directly from Corollary 7.44.
 - (a) Consider the \mathbb{F}_2 -linear equation $v_1 + v_2 + v_3 = 0$. Exhibit a list of 4 clauses (i.e., logical ORs of literals) over the variables such that if the equation is satisfied, then so are all 4 clauses, but if the equation is not satisfied, then at most 3 of the clauses are. Do the same for the equation $v_1 + v_2 + v_3 = 1$

Solution:

(b) Suppose that for every $\delta > 0$ there is an efficient algorithm for $(\frac{7}{8} + \delta, 1 - \delta)$ -approximating Max-E3-Sat. Give, for every $\delta > 0$, an efficient algorithm for $(\frac{1}{2} + \delta, 1 - \delta)$ -approximating Max-E3-Lin.

Solution:

(c) Alternatively, show how to transform any (α, β) -Dictator-vs.-No-Notables test using Max-E3-Lin predicates into a $(\frac{3}{4} + \frac{1}{4}\alpha, \beta)$ -Dictator-vs.-No-Notables test using Max-E3-Sat predicates.

Solution:

Lecture 18

- 1. (O 9.8) Fix $k \in N$. The goal of this exercise is to show that "projection to degree k is a bounded operator in all L_p norms, p > 1". Let $f : \{-1, 1\}^n \to \mathbb{R}$.
 - (a) Let $q \geq 2$. Show that $||f^{\leq k}||_q \leq \sqrt{q-1}^k ||f||_q$. (Hint: Use Theorem 9.21 to show the stronger statement $||f^{\leq k}||_q \leq \sqrt{q-1}^k ||f||_2$.)

Solution:

(b) Let $1 < q \le 2$. Show that $||f^{\le k}||_q \le (1/\sqrt{q-1})^k ||f||_q$. (Hint: Either give a similar direct proof using the (p,2)-Hypercontractivity Theorem, or explain how this follows from part (a) using the dual norm Proposition 9.19.)

Solution:

- 2. (O 9.11)
 - (a) Suppose $\mathbb{E}[X] = 0$. Show that X is (q, q, 0)-hypercontractive for all $q \geq 1$. (Hint: Use monotonicity of norms to reduce to the case q = 1.)

Solution:

(b) Show further that X is (q, q, ρ) -hypercontractive for all $0 \le \rho < 1$. (Hint: Write $(a + \rho X) = (1 - \rho)a + \rho(a + X)$ and employ the triangle inequality for $\|\cdot\|_q$.)

Solution:

3. (O 9.17) Deduce the $p \le 2 \le q$ cases of the Hypercontractivity Theorem from the (2, q)- and (p, 2)Hypercontractivity Theorems. (Hint: Use the semigroup property of T_{ρ} , Exercise 2.32.)

Solution: