Lecture 14 - 1. (O 7.11) - (a) Let ϕ be a CNF of size s and width $w \geq 3$ over variables x_1, \ldots, x_n . Show that there is an "equivalent" CNF ϕ' of size at most (w-2)s and width 3 over the variables x_1, \ldots, x_n plus auxiliary variables Π_1, \ldots, π_ℓ with $\ell \leq (w-3)s$. Here "equivalent" means that for every x such that $\phi(x) = \text{True}$ there exists Π such that $\phi'(x, \Pi) = \text{True}$; and, for every x such that $\phi(x) = \text{False}$ we have $\phi'(x, \Pi) = \text{False}$ for all Π . ## **Solution:** (b) Extend the above so that every clause in ϕ' has width exactly 3 (the size may increase by O(s)). ### **Solution:** 2. (O 7.12) Suppose there exists an r-query PCPP reduction \mathcal{R}_1 with rejection rate λ . Show that there exists a 3-query PCPP reduction \mathcal{R}_2 with rejection rate at least $\lambda/(r2^r)$. The proof length of \mathcal{R}_2 should be at most $r2^r \cdot m$ plus the proof length of \mathcal{R}_1 (where m is the description-size of \mathcal{R}_1 's output) and the predicates output by the reduction should all be logical ORs applied to exactly three literals. # Solution: 3. (O 7.17) Give a 3-query, length-O(n) PCPP system (with rejection rate a positive universal constant) for the class $\{w_1, w_2 \in \mathbb{F}_2^n : (-1)^{w_1 \cdot w_2} = 1\}$. ### Solution: # Lecture 15 - 1. (O 7.10) - (a) Say that A is an (α, β) -distinguishing algorithm for Max-CSP(Ψ) if it outputs 'YES' on instances with value at least β and outputs 'NO' on instances with value strictly less than α . (On each instance with value in $[\alpha, \beta)$, algorithm A may have either output.) Show that if there is an efficient (α, β) -approximation algorithm for Max-CSP(Ψ), then there is also an efficient (α, β) -distinguishing algorithm for Max-CSP(Ψ). ### Solution: # Instructor: Shravas Rao Week 8 Questions Student: FIRSTNAME LASTNAME (b) Consider Max-CSP(Ψ), where Ψ be a class of predicates that is closed under restrictions (to nonconstant functions); e.g., Max-3-Sat. Show that if there is an efficient (1,1)-distinguishing algorithm, then there is also an efficient (1,1)-approximation algorithm. (Hint: Try out all labels for the first variable and use the distinguisher.) ## **Solution:** - 2. (O 7.20) A randomized assignment for an instance \mathcal{P} of a CSP over domain is a mapping F that labels each variable in V with a probability distribution over domain elements. Given a constraint (S, ψ) with $S = (v_1, \ldots, v_r)$, we write $\psi(F(S)) \in [0, 1]$ for the expected value of $\psi(F(v_1), \ldots, F(v_r))$. This is simply the probability that ψ is satisfied when one actually draws from the domain-distributions assigned by F. Finally, we define the value of F to be $\operatorname{Val}_{\mathcal{P}}(F) = E_{S,\psi}[\psi(F(S))]$. - (a) Suppose that A is a deterministic algorithm that produces a randomized assignment of value α on a given instance \mathcal{P} . Show a simple modification to A that makes it a randomized algorithm that produces a (normal) assignment whose value is α in expectation. (Thus, in constructing approximation algorithms we may allow ourselves to output randomized assignments.) ## **Solution:** (b) Let A be the deterministic Max-E3-Sat algorithm that on every instance outputs the randomized assignment that assigns the uniform distribution on $\{0,1\}$ to each variable. Show that this is a $(\frac{7}{8},\beta)$ -approximation algorithm for any β . Show also that the same algorithm is a $(\frac{1}{2},\beta)$ -approximation algorithm for Max-3-Lin. ## **Solution:** (c) When the domain Ω is $\{-1,1\}$, we may model a randomized assignment as a function $f: V \to [-1,1]$; here $f(v) = \mu$ is interpreted as the unique probability distribution on $\{-1,1\}$ which has mean μ . Now given a constraint (S,ψ) with $S=(v_1,\ldots,v_r)$, show that the value of f on this constraint is in fact $\psi(f(v_1),\ldots,f(v_r))$, where we identify $\psi:\{-1,1\}^r \to \{0,1\}$ with its multilinear (Fourier) expansion. (Hint: Exercise 1.4.) ## **Solution:** (d) Let Ψ be a collection of predicates over domain $\{-1,1\}$. Let $\nu = \min_{\psi \in \Psi} \{\widehat{\psi}(\emptyset)\}$. Show that outputting the randomized assignment f = 0 is an efficient $\nu, beta$)-approximation algorithm for Max-CSP(Ψ). #### Solution: 3. (O 7.21) Let F be a randomized assignment of value α for CSP instance \mathcal{P} (as in Exercise 7.20). Give an efficient deterministic algorithm that outputs a usual assignment of value at least α . (Hint: Try all possible labelings for the first variable and compute the expected value Week 8 Questions Student: FIRSTNAME LASTNAME that would be achieved if F were used for the remaining variables. Pick the best label for the first variable and repeat.) | Solution: | |-----------| |-----------|