Lecture 10

1. (O 2.43) Show that for all functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\frac{1-e^{-2}}{2 n} \mathbf{I}[f] \leq N S_{1 / n}[f] \leq \frac{1}{n} \mathbf{I}[f]
$$

Solution:

2. (O 5.30) Consider the sequence of LTFs $f_{n}:\{-1,1\}^{n} \rightarrow\{0,1\}$ defined by $f_{n}(x)=1$ if and only if $\sum_{i=1}^{n} \frac{1}{\sqrt{n}} x_{i}>t$. (I.e., f_{n} is the indicator of the Hamming ball of radius $\frac{n}{2}-\frac{t}{2} \sqrt{n}$ centered at $(1,1, \ldots, 1)$.) Show that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[f_{n}\right]=\bar{\Phi}(t), \quad \lim _{n \rightarrow \infty} \mathbf{W}^{1}\left[f_{n}\right]=\phi(t)^{2}
$$

where ϕ is the pdf of a standard Gaussian and $\bar{\Phi}$ is the complementary cdf (i.e., $\bar{\Phi}(u)=\int_{u}^{\infty} \phi$). (Hint for $\mathbf{W}^{1}\left[f_{n}\right]$: use symmetry to show it equals the square of $\mathbb{E}\left[f_{n}(x) \sum \frac{1}{\sqrt{n}} x_{i}\right]$.)

Solution:

3. (O 5.32) Consider the sequence of LTFs defined in the previous problem. Show that

$$
\lim _{n \rightarrow \infty} \operatorname{Stab}_{\rho}\left[f_{n}\right]=\operatorname{Pr}\left[z_{1}>t, z_{2}>t\right]
$$

where z_{1} and z_{2} are standard Gaussians with correlation $\mathbb{E}\left[z_{1} z_{2}\right]=\rho$.

Solution:

4. (O 5.28) For integer $0 \leq j \leq n$, define $\mathscr{K}_{j}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ by $\mathscr{K}_{j}(x)=\sum_{|S|=j} x^{S}$. Since \mathscr{K}_{j} is symmetric, the value $\mathscr{K}_{j}(x)$ depends only on the number z of -1 's in x; or equivalently, on $\sum_{i=1}^{n} x_{i}$. Thus we may define $K_{j}:\{0,1, \ldots, n\} \rightarrow \mathbb{R}$ by $K_{j}(z)=\mathscr{K}_{k}(x)$ for any x with $\sum_{i} x_{i}=n-2 z$.
(a) Show that $K_{j}(z)$ can be expressed as a degree- j polynomial in z. It is called the Kravchuk (or Krawtchouk) polynomial of degree j. (The dependence on n is usually implicit.)

Solution:

(b) Show that

$$
\sum_{j=0}^{n} \mathscr{K}_{j}(x)= \begin{cases}2^{n} & \text { if } x=(1,1, \ldots, 1) \\ 0 & \text { otherwise }\end{cases}
$$

Northwestern Instructor: Shravas Rao
Winter 2021 Week 6 Questions Student: FIRSTNAME LASTNAME

Solution:

(c) Show for $\rho \in[-1,1]$ that $\sum_{j=0}^{n} \mathscr{K}_{j}(x) \rho^{j}=2^{n} \operatorname{Pr}[y=(1,1, \ldots, 1)]$, where $y \sim N_{p}(x)$.

Solution:

(d) Deduce the generating function identity, that $K_{j}(z)$ is the coefficient of ρ^{j} in $(1-\rho)^{x}(1+$ $\rho)^{n-x}$.

Solution:

Lecture 11

1. Let S_{1}, \ldots, S_{t} be a collection of disjoint subsets of $[n]$ such that $\left|\widehat{f}\left(S_{i}\right)\right| \leq \varepsilon$ for all i. Give appropriate generalizations of the level- 1 inequality and $2 / \pi$ theorem.

Solution:

2. (O 9.1) For every $1<b<B$ show that there is a b-reasonable random variable X such that $1+X$ is not B-reasonable.

Solution:

3. Show that if X is a nonnegative random variable with $\operatorname{Pr}[X>K]=\delta$ and $\mathbb{E}[X] \geq L>K$ then $\mathbb{E}\left[X^{2}\right] \geq(L-K)^{2} / \delta$.

Solution:

