Lecture 8

1. (O 4.17) Let $f:\{\text { True, False }\}^{n} \rightarrow\{$ True, False $\}$ be computable by a CNF C of width w. In this exercise you will show that $\mathbf{I}[f] \leq w$. Consider the following randomized algorithm that tries to produce an input $\mathbf{x} \in f^{-1}$ (True). First, choose a random permutation $\pi \in S_{n}$. Then for $1=1, \ldots, n$: If the single-literal clause $\mathbf{x}_{\pi(i)}$ appears in C, then set $\mathbf{x}_{\pi(i)}=$ True, syntactically simplify C under this setting, and say that coordinate $\pi(i)$ is "forced". Similarly, if the singleliteral clause $\overline{\mathbf{x}}_{\pi(i)}$ appears in C, then set $\mathbf{x}_{\pi(i)}=$ False, syntactically simplify C, and say that $\pi(i)$ is "forced". If neither holds, set $\mathbf{x}_{\pi(i)}$ uniformly at random. If C ever contains two single-literal clauses x_{j} and \bar{x}_{j}, the algorithm "gives up" and outputs $\mathbf{x}=\perp$
(a) Show that if $\mathbf{x} \neq \perp$, then $f(\mathbf{x})=$ True.

Solution:

(b) For $x \in f^{-1}$ (True) let $p(x)=\operatorname{Pr}[\mathbf{x}=x]$. For $j \in[n]$ let I_{j} be the indicator random variable for the event that coordinate $j \in[n]$ is forced. Show that $p(x)=\mathbb{E}\left[\prod_{j=1}^{n}(1 / 2)^{1-I_{j}}\right]$

Solution:

(c) Deduce $2^{n} p(x) \geq 2 \sum_{j=1}^{n} \mathbb{E}\left[I_{j}\right]$

Solution:

(d) Show that for every x with $f(x)=$ True, $f\left(x^{\oplus j}\right)=$ False it holds that $\mathbb{E}\left[I_{j} \mid \mathbf{x}=x\right] \geq 1 / w$

Solution:

(e) Deduce $\mathbf{I}[f] \leq w$.

Solution:

2. (O 4.19)In this exercise you will prove the Baby Switching Lemma with constant 3 in place of 5. Let $\phi=T_{1} \vee T_{2} \vee \cdots \vee T_{s}$ be a DNF of width $w \geq 1$ over variables x_{1}, \ldots, x_{n}. We may assume $\delta \leq 1 / 3$, else the theorem is trivial.
(a) (a) Suppose $R=(J \mid z)$ is a "bad" restriction, meaning that $\phi_{J \mid z}$ is not a constant function. Let i be minimal such that $\left(T_{i}\right)_{J \mid z}$ is neither constantly True or False, and let j be minimal such that x_{j} or $\overline{x_{j}}$ appears in this restricted term. Show there is a unique restriction $R^{\prime}=\left(J \backslash\{j\} \mid z^{\prime}\right)$ extending R that doesn't falsify T_{i}.

Solution:

(b) Suppose we enumerate all bad restrictions R, and for each we write the associated R^{\prime} as in (a). Show that no restriction is written more than w times.

Solution:

(c) If $(J \mid z)$ is a δ-random restriction and R and R^{\prime} are as in (a), show that

$$
\operatorname{Pr}[(J \mid z)=R]=\frac{2 \delta}{1-\delta} \operatorname{Pr}\left[(J \mid z)=R^{\prime}\right]
$$

Solution:

(d) Complete the proof by showing $\operatorname{Pr}[(J \mid z)$ is bad$] \leq 3 \delta w$

Solution:

Lecture 9

1. (O 5.2) Let $f(x)=\operatorname{sgn}\left(a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}\right)$ be an LTF.
(a) Show that if $a_{0}=0$, then $\mathbb{E}[f]=0$. (Hint: Show that f is in fact an odd function.)

Solution:

(b) Show that if $a_{0} \geq 0$, then $\mathbb{E}[f] \geq 0$. Show that the converse need not hold.

Solution:

(c) Suppose $g:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is an LTF with $\mathbb{E}[g]=0$. Show that g can be represented as $g(x)=\operatorname{sgn}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)$

Solution:

2. (O 5.5) Suppose $\ell:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is defined by $\ell(x)=a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}$. Define $\widetilde{\ell}:\{-1,1\}^{n+1} \rightarrow \mathbb{R}$ is defined by $\widetilde{\ell}(x)=a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}$. Show that $\|\widetilde{\ell}\|_{1}=\|\ell\|_{1}$ and $\|\widetilde{\ell}\|_{2}^{2}=\|\ell\|_{2}^{2}$.

Solution:

3. (O 5.7) Consider the following "correlation distillation" problem (cf. Exercise 2.56). For each $i \in[n]$ there is a number $\rho_{i} \in[-1,1]$ and an independent sequence of pairs of ρ_{i}-correlated bits, $\left(a^{(1)}, b^{(1)}\right),\left(a^{(2)}, b^{(2)}\right),\left(a^{(3)}, b^{(3)}\right)$, etc. Party A on Earth has access to the stream of bits $a^{(1)}, a^{(2)}, a^{(3)}, \ldots$ and a party B on Venus has access to the stream $b^{(1)}, b^{(2)}, b^{(3)}, \ldots$.. Neither party knows the numbers $\rho_{1}, \ldots, \rho_{n}$. The goal is for B to estimate these correlations. To assist in this, A can send a small number of bits to B. A reasonable strategy is for A to send $f\left(a^{(1)}\right), f\left(a^{(2)}\right), f\left(a^{(3)}\right)$ to B , where $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is some Boolean function. Using this information B can try to estimate $\mathbb{E}\left[f(a) b_{i}\right]$ for each i.

Boolean Functions
Northwestern Instructor: Shravas Rao
Winter 2021 Week 5 Questions Student: FIRSTNAME LASTNAME
(a) Show that $\mathbb{E}\left[f(a) b_{i}\right]=\widehat{f}(i) \rho_{i}$.

Solution:

(b) This motivates choosing an f for which all $\widehat{f}(i)$ are large. If we also insist all $\widehat{f}(i)$ be equal, show that majority functions f maximize this common value.

Solution:

4. (5.8) For $n \geq 2$, let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a randomly chosen function (as in Exercise 1.7). Show that $\|f\|_{\infty} \leq 2 \sqrt{n} 2^{-n / 2}$ except with probability at most 2^{-n}.

Hint: First, consider one Fourier coefficient. Then apply a union bound.

Solution:

