Lecture 6

1. (O 3.29) Let $\phi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}^{\geq 0}$ be a probability density function corresponding to probability distribution Φ on \mathbb{F}_{2}^{n}. Let $J \subseteq[n]$.
(a) Consider the marginal probability distribution of Φ on coordinates J. What is its probability density function (a function $\mathbb{F}_{2}^{J} \rightarrow \mathbb{R}^{\geq 0}$) in terms of ϕ ?

Solution:

(b) Consider the probability distribution of ϕ conditioned on a substring $s \in \mathbb{F}_{2}^{\bar{J}}$. Assuming it's well defined, what is its probability density function in terms of ϕ ?

Solution:

2. (O $3.16 / 3.38)$ Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and let $\varepsilon>0$. Show that f is ε-concentrated on a collection $\mathcal{F} \subseteq 2^{[n]}$ with $|\mathcal{F}| \leq\|f\|_{1}^{2} / \varepsilon$.
Let \mathcal{C} be the set of functions f such that $\|f\|_{1} \leq s$. Show that \mathcal{C} can be learned with error ε in time $\operatorname{poly}(n, s, 1 / \varepsilon)$.

Solution:

3. (O 3.44) Let $\tau \geq 1 / 2+\varepsilon$ for some constant $\varepsilon>0$. Give an algorithm simpler than Goldreich and Levin's that solves the following problem with high probability: Given query access to $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, in time poly $(n, 1 / \varepsilon)$ find the unique $U \in[n]$ such that $|\widehat{f}(U)| \geq \tau$ assuming it exists. (Hint: First, consider the case $\varepsilon=1 / 2$. Use the local correction algorithm from Lecture 2 to generalize this.)

Solution:

4. (O 3.45) Informally: a "one-way permutation" is a bijective function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ that is easy to compute on all inputs but hard to invert on more than a negligible fraction of inputs; a "pseudorandom generator" is a function $f: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{m}$ for $m>k$ whose output on a random input "looks unpredictable" to any efficient algorithm. Goldreich and Levin proposed the following construction of the latter from the former: for $k=2 n, m=2 n+1$, define

$$
g(r, s)=(r, f(s), r \cdot s)
$$

where $r, s \in \mathbb{F}_{2}^{n}$. When g 's input (r, s) is uniformly random, then so is the first $2 n$ bits of its output (using the fact that f is a bijection). The key to the analysis is showing that the final bit, $r \cdot s$, is highly unpredictable to efficient algorithms even given the first $2 n \operatorname{bits}(r, f(s))$. This is proved by contradiction.
(a) Suppose that an adversary has a deterministic, efficient algorithm A good at predicting the bit $r \cdot s$:

$$
\operatorname{Pr}_{r, s \sim \mathbb{F}_{2}^{n}}[A(r, f(s))=r \cdot s] \geq \frac{1}{2}+\gamma
$$

Show there exists $B \subseteq \mathbb{F}_{2}^{n}$ with $|B| / 2^{n} \geq \frac{1}{2} \gamma$ such that

$$
\operatorname{Pr}_{r \sim \mathbb{F}_{2}^{n}}[A(r, f(s))=r \cdot s] \geq \frac{1}{2}+\frac{1}{2} \gamma
$$

for all $s \in B$.

Solution:

(b) Switching to ± 1 notation in the output, deduce $\widehat{A_{\mid f(s)}}(s) \geq \gamma$ for all $s \in B$.

Solution:

(c) Show that the adversary can efficiently compute s given $f(s)$ (with high probability) for any $s \in B$. If γ is nonnegligible, this contradicts the assumption that f is "one-way". (Hint: Use the Goldreich-Levin Algorithm.)

Solution:

Lecture 7

1. (O 4.1) Show that every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be represented by a DNF formula of size at most 2^{n} and width at most n.

Solution:

2. (O 4.3) A DNF formula is said to be monotone if its terms contain only unnegated variables. Show that monotone DNFs compute monotone functions and that any monotone function can be computed by a monotone DNF.

Solution:

3. (O 4.9) Give a direct (Fourier-free) proof of the following Corollary. (Hint: Condition on whether $i \in J$.
Fix $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and $i \in[n]$. If $(j \mid x)$ is a δ-random restriction, then $\mathbb{E}\left[\operatorname{Inf}_{i}\left[f_{J \mid x}\right]\right]=\delta \operatorname{Inf}_{i}[f]$. Hence also $\mathbb{E}\left[\mathbf{I}\left[f_{J \mid x}\right]\right]=\delta \mathbf{I}[f]$.

Boolean Functions
Northwestern Instructor: Shravas Rao
Winter 2021
Week 4 Questions Student: FIRSTNAME LASTNAME

Solution:

4. (Based on O 4.12)
(a) Show that the parity function $\chi_{[n]}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be computed by a DNF (or a CNF) of size 2^{n-1}.

Solution:

(b) Show that the bound 2^{n-1} above is exactly tight. (Hint: Show that every term must have width exactly n.)

Solution:

(c) Show that there is a depth- 4 circuit of size $O\left(n^{1 / 2} 2^{2 n^{1 / 2}}\right)$ computing $\chi_{[n]}$. (Hint: Break up the input into $n^{1 / 2}$ blocks of size $n^{1 / 2}$ and use (a) twice.)

Solution:

(d) More generally, show there is a depth- $2 d$ circuit of size $O\left(n^{1-1 / d} 2^{d n^{1 / d}}\right)$ computing $\chi_{[n]}$.

Solution:

