Lecture 4

1. (O 2.31) Show that T_{ρ} is positivity-preserving for $\rho \in[-1,1]$; i.e., $f \geq 0$ implies $T_{\rho} f \geq 0$. Show that T_{ρ} is positivity-improving for $\rho \in(-1,1)$; i.e., $f \geq 0$ and $f \neq 0$ implies $T_{\rho} f>0$.

Solution:

2. (O 2.34) Show that $\left|T_{\rho} f\right| \leq T_{\rho}|f|$ pointwise for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Further show that for $\rho \in(-1,1)$, equality occurs if and only if f is everywhere nonnegative or everywhere nonpositive.

Solution:

3. (O 2.36) Show that $\operatorname{Stab}_{-\rho}[f]=-\operatorname{Stab}_{\rho}[f]$ if f is odd and $\operatorname{Stab}_{-\rho}[f]=\operatorname{Stab}_{\rho}[f]$ if f is even.

Solution:

4. (O 2.53) The Hamming distance $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$ on the discrete cube $\{-1,1\}^{n}$ is an example of an ℓ_{1} metric space. For $D \geq 1$, we say that the discrete cube can be embedded into ℓ_{2} with distortion D if there is a mapping $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$ for some $m \in \mathbb{N}$ such that:

- $\|F(x)-F(y)\|_{2} \geq \Delta(x, y)$ for all x, y (no contraction)
- $\|F(x)-F(y)\|_{2} \leq D \Delta(x, y)$ for all x , y (expansion at monst D)

In this exercise you will show that the least distortion possible is $D=\sqrt{n}$.
(a) Recalling the definition of $f^{\text {odd }}$ from Exercise 1.8, show that for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we have $\left\|f^{\text {odd }}\right\|_{2}^{2} \leq \mathbf{I}[f]$ and hence

$$
\mathbb{E}_{x}\left[(f(x)-f(-x))^{2}\right] \leq \sum_{i=1}^{n} \mathbb{E}_{x}\left[\left(f(x)-f\left(x^{\oplus i}\right)\right)^{2}\right] .
$$

Solution:

(b) Suppose $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$ and write $F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$ for functions $f_{i}:\{-1,1\}^{n} \rightarrow \mathbb{R}$. By summing the above inequality over $i \in[m]$, show that any F with no contraction must have expansion at least \sqrt{n}.

Solution:

(c) Show that there is an embedding F achieving distortion \sqrt{n}.

Solution:

Lecture 5

1. (O 3.4) Prove Lemma 3.5 (listed below) by induction on n. (Hint: If one of the subfunctions $f\left(x_{1}, x_{2}, \ldots, x_{n}, \pm 1\right)$ is identically 0 , show that the other has degree at most $k-1$.)
Suppose $\operatorname{deg}(f) \leq k$ where $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is not identically 0 . Then $\operatorname{Pr}\left[f(x) \neq 0 \geq 2^{-k}\right]$.

Solution:

2. (O 3.15) Given $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$, define its fractional sparsity to be sparsity $(f)=|\operatorname{supp}(f)| / 2^{n}=$ $\operatorname{Pr}_{x \in \mathbb{F}_{2}^{n}}[f(x) \neq 0]$. In this exercise, you will prove the uncertainty princple: If f is non-zero, then $\operatorname{sparsity}(f) \cdot \operatorname{sparsity}(\widehat{f}) \geq 1$:
(a) Show that we may assume $\|f\|_{1}=1$.

Solution:

(b) Suppose $\mathcal{F}=\{\gamma: \widehat{f}(\gamma) \neq 0\}$. Show that $\hat{\| f} \hat{\|}_{2}^{2} \leq|\mathcal{F}|$.

Solution:

(c) Suppose $\mathcal{G}=\{x: f(x) \neq 0\}$. Show that $\|f\|_{2}^{2} \geq 2^{n} /|\mathcal{G}|$.

Hint: Recall that Cauchy-Schwarz says that $\langle f, g\rangle \leq\|f\|_{2}\|g\|_{2}$.

Solution:

(d) Identify all cases of equality.

Solution:

3. (O 3.19) Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ be computable by a decision tree of size s and depth k Show that $-f$ and the Boolean dual f^{\dagger} are also computable by decision trees of size s and depth k.

Solution:

4. (O 3.34) Improve Proposition 3.31 as follows. Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and g : $\{-1,1\}^{n} \rightarrow \mathbb{R}$ satisfy $\|f-g\|_{1} \leq \varepsilon$. Pick $\theta \in[-1,1]$ uniformly at random and define $h:\{-1,1\}^{n} \rightarrow\{-1,1\}$ by $h(x)=\operatorname{sgn}(g(x)-\theta)$. Show that $\mathbb{E}[\operatorname{dist}(f, h)] \leq \varepsilon / 2$.

Boolean Functions
Northwestern Instructor: Shravas Rao
Winter 2021
Week 3 Questions Student: FIRSTNAME LASTNAME

Solution:

