Lecture 4

1. (O 2.31) Show that T_{ρ} is positivity-preserving for $\rho \in [-1, 1]$; i.e., $f \geq 0$ implies $T_{\rho}f \geq 0$. Show that T_{ρ} is positivity-improving for $\rho \in (-1, 1)$; i.e., $f \geq 0$ and $f \neq 0$ implies $T_{\rho}f > 0$.

Solution:

2. (O 2.34) Show that $|T_{\rho}f| \leq T_{\rho}|f|$ pointwise for any $f : \{-1,1\}^n \to \mathbb{R}$. Further show that for $\rho \in (-1,1)$, equality occurs if and only if f is everywhere nonnegative or everywhere nonpositive.

Solution:

3. (O 2.36) Show that $\operatorname{Stab}_{-\rho}[f] = -\operatorname{Stab}_{\rho}[f]$ if f is odd and $\operatorname{Stab}_{-\rho}[f] = \operatorname{Stab}_{\rho}[f]$ if f is even.

Solution:

- 4. (O 2.53) The Hamming distance $\Delta(x,y) = |\{i : x_i \neq y_i\}|$ on the discrete cube $\{-1,1\}^n$ is an example of an ℓ_1 metric space. For $D \geq 1$, we say that the discrete cube can be embedded into ℓ_2 with distortion D if there is a mapping $F : \{-1,1\}^n \to \mathbb{R}^m$ for some $m \in \mathbb{N}$ such that:
 - $||F(x) F(y)||_2 \ge \Delta(x, y)$ for all x, y (no contraction)
 - $||F(x) F(y)||_2 \le D\Delta(x, y)$ for all x, y (expansion at monst D)

In this exercise you will show that the least distortion possible is $D = \sqrt{n}$.

(a) Recalling the definition of f^{odd} from Exercise 1.8, show that for any $f: \{-1, 1\}^n \to \mathbb{R}$ we have $\|f^{\text{odd}}\|_2^2 \leq \mathbf{I}[f]$ and hence

$$\mathbb{E}_x[(f(x) - f(-x))^2] \le \sum_{i=1}^n \mathbb{E}_x\left[\left(f(x) - f(x^{\oplus i})\right)^2\right].$$

Solution:

(b) Suppose $F: \{-1,1\}^n \to \mathbb{R}^m$ and write $F(x) = (f_1(x), f_2(x), \dots, f_m(x))$ for functions $f_i: \{-1,1\}^n \to \mathbb{R}$. By summing the above inequality over $i \in [m]$, show that any F with no contraction must have expansion at least \sqrt{n} .

Solution:

(c) Show that there is an embedding F achieving distortion \sqrt{n} .

Solution:

Lecture 5

1. (O 3.4) Prove Lemma 3.5 (listed below) by induction on n. (Hint: If one of the subfunctions $f(x_1, x_2, ..., x_n, \pm 1)$ is identically 0, show that the other has degree at most k - 1.) Suppose $\deg(f) \leq k$ where $f : \{-1, 1\}^n \to \mathbb{R}$ is not identically 0. Then $\Pr[f(x) \neq 0 \geq 2^{-k}]$.

Solution:

- 2. (O 3.15) Given $f: \mathbb{F}_2^n \to \mathbb{R}$, define its fractional sparsity to be sparsity $(f) = |\text{supp}(f)|/2^n = \Pr_{x \in \mathbb{F}_2^n}[f(x) \neq 0]$. In this exercise, you will prove the uncertainty princple: If f is non-zero, then sparsity $(f) \cdot \text{sparsity}(\widehat{f}) \geq 1$:
 - (a) Show that we may assume $||f||_1 = 1$.

Solution:

(b) Suppose $\mathcal{F} = \{ \gamma : \widehat{f}(\gamma) \neq 0 \}$. Show that $\|\widehat{f}\|_2^2 \leq |\mathcal{F}|$.

Solution:

(c) Suppose $\mathcal{G} = \{x: f(x) \neq 0\}$. Show that $||f||_2^2 \geq 2^n/|\mathcal{G}|$. Hint: Recall that Cauchy-Schwarz says that $\langle f, g \rangle \leq ||f||_2 ||g||_2$.

Solution:

(d) Identify all cases of equality.

Solution:

3. (O 3.19) Let $f: \mathbb{F}_2^n \to \mathbb{R}$ be computable by a decision tree of size s and depth k Show that -f and the Boolean dual f^{\dagger} are also computable by decision trees of size s and depth k.

Solution:

4. (O 3.34) Improve Proposition 3.31 as follows. Suppose $f: \{-1,1\}^n \to \{-1,1\}$ and $g: \{-1,1\}^n \to \mathbb{R}$ satisfy $||f-g||_1 \le \varepsilon$. Pick $\theta \in [-1,1]$ uniformly at random and define $h: \{-1,1\}^n \to \{-1,1\}$ by $h(x) = \operatorname{sgn}(g(x) - \theta)$. Show that $\mathbb{E}[\operatorname{dist}(f,h)] \le \varepsilon/2$.

Boolean Functions Northwestern Winter 2021

Week 3 Questions Student: FIRSTNAME LASTNAME

Solution:
