Lecture 2

1. (O 1.23) In this exercise, you will prove some basic facts about "distances" between probability distributions. Let ϕ and ψ be probability densities on \mathbb{F}_2^n .

Recall that

$$||f||_p = \mathbb{E}[|f(x)|^p]^{1/p}$$

and that Jensen's inequality states that if 0 , then

$$\mathbb{E}[|f(x)|^p]^{1/p} \le \mathbb{E}[|f(x)|^q]^{1/q}.$$

(a) Show that the total variation distance between ϕ and ψ , defined by

$$d_{\text{TV}}(\phi, \psi) = \max_{A \subseteq \mathbb{F}_2^n} \{ |\Pr_{y \sim \phi}[y \in A] - \Pr_{y \sim \psi}[y \in A] | \}$$

is equal to $\frac{1}{2} \|\phi - \psi\|_1$.

Solution:

(b) Show that the *collision probability* of ϕ , defined to be

$$\Pr_{\substack{y,y'\sim\phi\\\text{independently}}}[y=y']$$

is equal to $\|\phi\|_2^2/2^n$.

Solution:

(c) The χ^2 -distance of ϕ from ψ is defined by

$$d_{\chi^2}(\phi, \psi) = \mathbb{E}_{y \sim \psi} \left[\left(\frac{\phi(y)}{\psi(y)} - 1 \right)^2 \right],$$

assuming ψ has full support. Show that the $\chi 2$ -distance of ϕ from uniform is equal to $\mathrm{Var}[\phi].$

Solution:

(d) Show that the total variation distance of ϕ from uniform is at most $\frac{1}{2}\sqrt{\text{Var}[\phi]}$.

Solution:

- 2. Let $f: \mathbb{F}_2^n \to \mathbb{R}$. Construct functions $g_1, g_2: \mathbb{F}_2^n \to \mathbb{R}$ such that
 - (a) $f * g_1 = D_i f$ where $D_i f(x) = (f(x) f(x^{\oplus i}))/2$

Solution:

(b) $f * g_2 = T_{\rho} f$ where $T_{\rho} f = \sum_{S \subset [n]} \rho^{|S|} \widehat{f}(S) \chi_S$.

Solution:

- 3. (O 1.29)
 - (a) We call $f: \mathbb{F}_2^n \to \mathbb{F}_2$ an affine function if $f(x) = a \cdot x + b$ for some $a \in \mathbb{F}_2^n$, $b \in \mathbb{F}_2$. Show that f is affine if and only if f(x) + f(y) + f(x) = f(x + y + z) for all $x, y, z \in \mathbb{F}_2^n$.

Solution:

(b) Let $f: \mathbb{F}_2^n \to \mathbb{R}$. Suppose we choose $x, y, z \sim \mathbb{F}_2^n$ independently and uniformly. Show that $\mathbb{E}[f(x)f(y)f(z)f(x+y+z)] = \sum_S \hat{f}(S)^4$.

Solution:

(c) Give a 4-query test for a function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ with the following property. If the test accepts with probability $1-\varepsilon$ then f is ε -close to being affine. All four query inputs should have the uniform distribution on \mathbb{F}_2^n (but of course need not be independent).

Solution:

(d) Give an alternate 4-query test for being affine in which three of the query inputs are uniformly distributed and the fourth is not random. (Hint: Show that f is affine if and only if f(x) + f(y) + f(0) = f(x+y) for all $x, y \in \mathbb{F}_2^n$.)

Solution:

Lecture 3

- 1. (O 2.3) Prove May's Theorem:
 - (a) Show that $f: \{-1,1\}^n \to \{-1,1\}$ is symmetric and monotone if and only if it can be expressed as a weighted majority with $a_1 = a_2 = \cdots = a_n = 1$. (That is, $f(x) = \text{sign}(a_0 + x_1 + x_2 + \cdots + x_n)$ for some a_0)

Solution:

(b) Suppose $f: \{-1,1\}^n \to \{-1,1\}$ is symmetric, monotone, and odd. Show that n must be odd, and that $f = \text{Maj}_n$.

Solution:

2. (O 2.19) Suppose $f, g : \{-1, 1\}^n \to \mathbb{R}$ have the property that f does not depend on the ith coordinate and g does not depend on the jth coordinate $(i \neq j)$. Show that $\mathbb{E}[x_i x_j f(x) g(x)] = \mathbb{E}[D_j f(x) D_i g(x)]$.

Here,
$$D_i f(x) = \frac{f(x^{i \mapsto 1}) - f(x^{i \mapsto -1})}{2}$$
.

Solution:

3. (Based on O 2.15) Define $E_i f(x) = \frac{f(x^{i \mapsto 1}) + f(x^{i \mapsto -1})}{2}$. Prove that $f = x_i D_i f + E_i f$, and give the Fourier coefficients of $E_i f$ in terms of the Fourier coefficients of f.

Solution:

4. (Based on O 2.27) Which functions $f: \{-1,1\}^n \to \{0,1\}$ such that $|\{x: f(x)=1\}|=3$ maximize $\mathbf{I}[f]$?

Solution: