Lecture 2

1. (O 1.23) In this exercise, you will prove some basic facts about "distances" between probability distributions. Let ϕ and ψ be probability densities on \mathbb{F}_{2}^{n}.
Recall that

$$
\|f\|_{p}=\mathbb{E}\left[|f(x)|^{p}\right]^{1 / p}
$$

and that Jensen's inequality states that if $0<p<q$, then

$$
\mathbb{E}\left[|f(x)|^{p}\right]^{1 / p} \leq \mathbb{E}\left[|f(x)|^{q}\right]^{1 / q}
$$

(a) Show that the total variation distance between ϕ and ψ, defined by

$$
d_{\mathrm{TV}}(\phi, \psi)=\max _{A \subseteq \mathbb{F}_{2}^{n}}\left\{\left|\operatorname{Pr}_{y \sim \phi}[y \in A]-\operatorname{Pr}_{y \sim \psi}[y \in A]\right|\right\}
$$

is equal to $\frac{1}{2}\|\phi-\psi\|_{1}$.

Solution:

(b) Show that the collision probability of ϕ, defined to be

$$
\operatorname{Pr}_{\substack{y, y^{\prime} \sim \phi \\ \text { independently }}}\left[y=y^{\prime}\right]
$$

is equal to $\|\phi\|_{2}^{2} / 2^{n}$.

Solution:

(c) The χ^{2}-distance of ϕ from ψ is defined by

$$
d_{\chi^{2}}(\phi, \psi)=\mathbb{E}_{y \sim \psi}\left[\left(\frac{\phi(y)}{\psi(y)}-1\right)^{2}\right]
$$

assuming ψ has full support. Show that the $\chi 2$-distance of ϕ from uniform is equal to $\operatorname{Var}[\phi]$.

Solution:

(d) Show that the total variation distance of ϕ from uniform is at most $\frac{1}{2} \sqrt{\operatorname{Var}[\phi]}$.

Solution:

2. Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$. Construct functions $g_{1}, g_{2}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ such that
(a) $f * g_{1}=D_{i} f$ where $D_{i} f(x)=\left(f(x)-f\left(x^{\oplus i}\right)\right) / 2$

Solution:

(b) $f * g_{2}=T_{\rho} f$ where $T_{\rho} f=\sum_{S \subset[n]} \rho^{|S|} \widehat{f}(S) \chi_{S}$.

Solution:

3. (O 1.29)
(a) We call $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ an affine function if $f(x)=a \cdot x+b$ for some $a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}$. Show that f is affine if and only if $f(x)+f(y)+f(x)=f(x+y+z)$ for all $x, y, z \in \mathbb{F}_{2}^{n}$.

Solution:

(b) Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$. Suppose we choose $x, y, z \sim \mathbb{F}_{2}^{n}$ independently and uniformly. Show that $\mathbb{E}[f(x) f(y) f(z) f(x+y+z)]=\sum_{S} \hat{f}(S)^{4}$.

Solution:

(c) Give a 4-query test for a function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ with the following property. If the test accepts with probability $1-\varepsilon$ then f is ε-close to being affine. All four query inputs should have the uniform distribution on \mathbb{F}_{2}^{n} (but of course need not be independent).

Solution:

(d) Give an alternate 4-query test for being affine in which three of the query inputs are uniformly distributed and the fourth is not random. (Hint: Show that f is affine if and only if $f(x)+f(y)+f(0)=f(x+y)$ for all $x, y \in \mathbb{F}_{2}^{n}$.)

Solution:

Lecture 3

1. (O 2.3) Prove May's Theorem:
(a) Show that $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is symmetric and monotone if and only if it can be expressed as a weighted majority with $a_{1}=a_{2}=\cdots=a_{n}=1$. (That is, $f(x)=$ $\operatorname{sign}\left(a_{0}+x_{1}+x_{2}+\cdots+x_{n}\right)$ for some $\left.a_{0}\right)$

Solution:

(b) Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is symmetric, monotone, and odd. Show that n must be odd, and that $f=\mathrm{Maj}_{n}$.

Solution:

2. (O 2.19) Suppose $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$ have the property that f does not depend on the i th coordinate and g does not depend on the j th coordinate $(i \neq j)$. Show that $\mathbb{E}\left[x_{i} x_{j} f(x) g(x)\right]=$ $\mathbb{E}\left[D_{j} f(x) D_{i} g(x)\right]$.
Here, $D_{i} f(x)=\frac{f\left(x^{i \mapsto 1}\right)-f\left(x^{i \mapsto-1}\right)}{2}$.

Boolean Functions
Northwestern Instructor: Shravas Rao
Winter 2021 Week 2 Questions Student: FIRSTNAME LASTNAME

Solution:

3. (Based on O 2.15) Define $E_{i} f(x)=\frac{f\left(x^{i \mapsto 1}\right)+f\left(x^{i \mapsto-1}\right)}{2}$. Prove that $f=x_{i} D_{i} f+E_{i} f$, and give the Fourier coefficients of $E_{i} f$ in terms of the Fourier coefficients of f.

Solution:

4. (Based on O 2.27) Which functions $f:\{-1,1\}^{n} \rightarrow\{0,1\}$ such that $|\{x: f(x)=1\}|=3$ maximize $\mathbf{I}[f]$?

Solution:

