This is a non-exhaustive list of things that do not have to be proved. In the following, x, y, w, z, and a are all real numbers unless stated otherwise.

- If x is an integer and y is an integer, then $x+y$ and $x \cdot y$ are integers.
- If x is an integer and y is a non-negative integer, then x^{y} is an integer.
- If $x=y$, then $x+a=y+a, x \cdot a=y \cdot a$, and $x^{a}=y^{a}$.
- If $x \leq y$ and a is positive, then $x+a \leq y+a$ and $x a \leq y a$.
- If $x \leq y$ and a is negative, then $x+a \leq y+a$ and $x a \geq y a$.
- If $x \leq y$ and $w \leq z$, then $x+w \leq y+z$.
- If $x \leq y$ and $w \leq z$ and w, z, y and z are positive, then $x w \leq y z$.
- If $x \leq y, x$ and y are both non-negative, and $a \geq 0$, then $x^{a} \leq y^{a}$. In particular, $y^{a} \geq 0$ by letting $x=0$.
- If $x \leq y, x$ and y are both non-negative, and $a \leq 0$, then $x^{a} \geq y^{a}$. In particular, $1 / x \geq 1 / y$ by letting
- $x \leq|x|$.
- If A and B are sets, then $a \in A \cup B$ if and only if $a \in A$ or $a \in B$.
- If A and B are sets, then $a \in A \cap B$ if and only if $a \in A$ and $a \in B$.
- If A and B are sets and $A \subseteq B$, then if $a \in A$, then $a \in B$.

