Instructor: Shravas Rao

This is a non-exhaustive list of things that do not have to be proved. In the following, x, y, w, z, and a are all real numbers unless stated otherwise.

- If x is an integer and y is an integer, then x + y and $x \cdot y$ are integers.
- If x is an integer and y is a non-negative integer, then x^y is an integer.
- If x = y, then x + a = y + a, $x \cdot a = y \cdot a$, and $x^a = y^a$.
- If $x \leq y$ and a is positive, then $x + a \leq y + a$ and $xa \leq ya$.
- If $x \leq y$ and a is negative, then $x + a \leq y + a$ and $xa \geq ya$.
- If $x \le y$ and $w \le z$, then $x + w \le y + z$.
- If $x \leq y$ and $w \leq z$ and w, z, y and z are positive, then $xw \leq yz$.
- If $x \le y$, x and y are both non-negative, and $a \ge 0$, then $x^a \le y^a$. In particular, $y^a \ge 0$ by letting x = 0.
- If $x \le y$, x and y are both non-negative, and $a \le 0$, then $x^a \ge y^a$. In particular, $1/x \ge 1/y$ by letting
- $x \leq |x|$.
- If A and B are sets, then $a \in A \cup B$ if and only if $a \in A$ or $a \in B$.
- If A and B are sets, then $a \in A \cap B$ if and only if $a \in A$ and $a \in B$.
- If A and B are sets and $A \subseteq B$, then if $a \in A$, then $a \in B$.