CS 396: Online Markets

Lecture 17: Online Matching

Last Time:

- matching markets
- maximum weight matching
- market clearing
- externality pricing mechanism (a.k.a, Vickrey-Clarke-Groves, VCG)

Today:

- maximum weight matching (cont)
- duality
- online matching

Exercise: Externality Pricing

Recall:

- externality pricing mechananism:
 - pick the outcome that maximizes the total welfare.
 - charge each buyer the difference between the optimal welfare without the buyer and the welfare of other buyers (in the optimal welfare outcome)

Setup:

- two buyers 1 and 2, two houses A and B
- bids:

	House A	House B
Buyer 1	8	7
Buyer 2	6	3

Questions:

- Which house does Buyer 2 get in the externality pricing mechanism?
- What is Buyer 2's payment?

Matching Algorithms

Alg: Ascending Prices (AP)

- 0. initialize prices: $\mathbf{p} = \mathbf{0}$
- 1. Construct demand graph D
- if D has perfect matching, output it and halt. (i.e., if **p** are market clearing)
- 3. else,
 - a) find set S "minimally" violating Hall's Thm
 - b) increase prices of N(S) until demand set of buyer $i \in S$ changes.
 - c) repeat (1)

Offline Matching Mechanisms

Recall: Externality Pricing Mechanisms maximizes welfare in dominant strategy equilibrium

Mech: Ascending Auction (AA)

"implement ascending prices (AP) as auction"

Thm: EP's prices = AP's prices.

Cor: "truthtelling" is dominant strategy in AA.

Analysis of Ascending Prices Algorithm

Thm: Ascending Prices Alg maximizes welfare

Proof: Primal = Dual

"for maximization problem, corresponding minimization problem"

Primal Program:

$$\begin{aligned} \text{Primal}(\mathbf{x}) &= \max_{\mathbf{x}} \sum_{ij} \mathsf{v}_{ij} \, \mathsf{x}_{ij} \\ \text{s.t.} \ \sum_{j} \mathsf{x}_{ij} \leq 1 \qquad \quad \forall i \\ \sum_{i} \mathsf{x}_{ij} \leq 1 \qquad \quad \forall j \end{aligned}$$

$$\mathsf{x}_{ij} \ge 0 \qquad \qquad \forall i, j$$

Dual Program:

$$\begin{aligned} \text{Dual}(\mathbf{u}, \mathbf{p}) &= \min_{\mathbf{u}, \mathbf{p}} \sum_{i} \mathbf{u}_{i} + \sum_{j} \mathbf{p}_{j} \\ \text{s.t. } \mathbf{u}_{i} + \mathbf{p}_{j} \geq \mathbf{v}_{ij} & \forall i, j \\ \mathbf{u}_{i} \geq 0 & \forall i \\ \mathbf{p}_{j} \geq 0 & \forall j \end{aligned}$$

Intuition:

- utilities \boldsymbol{u} and prices \boldsymbol{p}

• $u_i \ge v_{ij} - p_i$

Lemma 1: $Primal(\mathbf{x}) \leq Dual(\mathbf{u}, \mathbf{p})$

Lemma 2: alg's termination condition identifies dual solution with value equal to primal.

Proof 1:

- any primal feasible \mathbf{x}
- any dual feasible $\boldsymbol{u},\boldsymbol{p}$

Exercise: Matching Dual Recall:

$$\begin{aligned} \text{Dual}(\mathbf{u}, \mathbf{p}) &= \min_{\mathbf{u}, \mathbf{p}} \sum_{i} \mathsf{u}_{i} + \sum_{j} \mathsf{p}_{j} \\ \text{s.t. } \mathsf{u}_{i} + \mathsf{p}_{j} \geq \mathsf{v}_{ij} & \forall i, j \\ \mathsf{u}_{i} \geq 0 & \forall i \\ \mathsf{p}_{j} \geq 0 & \forall j \end{aligned}$$

Setup:

- two buyers 1 and 2, two houses A and B
- values:

	House A	House B
Buyer 1	8	7
Buyer 2	6	3

Questions: Identify dual utilities:

- $u_1?$
- u_2 ?

$$\begin{aligned} \text{Primal}(\mathbf{x}) &= \sum_{ij} \mathsf{v}_{ij} \mathsf{x}_{ij} \\ \text{[dual feasibility]} &\leq \sum_{ij} (\mathsf{u}_i + \mathsf{p}_j) \mathsf{x}_{ij} \\ &= \sum_i \sum_j \mathsf{u}_i \mathsf{x}_{ij} + \sum_j \sum_i \mathsf{p}_j \mathsf{x}_{ij} \\ &= \sum_i \mathsf{u}_i \sum_j \mathsf{x}_{ij} + \sum_j \mathsf{p}_j \sum_i \mathsf{x}_{ij} \\ \text{[primal feasibility]} &\leq \sum_i \mathsf{u}_i + \sum_j \mathsf{p}_j = \text{Dual}(\mathbf{u}, \mathbf{p}) \end{aligned}$$

Proof 2:

- for prices ${\boldsymbol{p}}$ and allocation ${\boldsymbol{x}}$ from algorithm,
- set \boldsymbol{u} as utilities of buyers
- $\mathbf{u}_i = \mathbf{v}_{ij} \mathbf{p}_j$ if $\mathbf{x}_{ij} = 1$
- perfect matching of demand sets $\Rightarrow \forall i, j: \ u_i \ge v_{ij} - p_j$ $\Rightarrow \text{dual feasibility}$
- inequalities are equalities in proof of Lemma 1. \Rightarrow primal = dual.

Online Matching

"match offline buyers to online items"

Setup:

- *n* buyers, *n* items.
- buyer has value v_i for any item in $S_i \subset \{1, \ldots, n\}$
- initially all buyers present
- in round j,
 - item j arrives.
 - match to any remaining buyer i with $S_i \ni j$.
 - matched buyer leaves

Goal: maximize welfare = sum of values of matched buyers.

Alg: Greedy Online Matching

in round j:
match to remaining buyer with highest value

Q: is this algorithm good?

Example:

- $v_1 = 100; S_1 = \{A\}$
- $v_2 = 101; S_2 = \{A, B\}$
- Greedy:
 - A arrives, assigned to 2.
 B arrives, not assigned.
- Greedy = 101
- OPT = 201
 - \Rightarrow 2 approximation

Q: can it be worse?

A: no.

Thm: Greedy Online Matching is a 2-approximation

Proof: - Approach: (a) each edge of Greedy blocks at most two edges of OPT (b) these blocked edges are lower value

- consider (i, j) matched by OPT
- suppose (i, j) matched by Greedy: - charge v_i to (i, j)
- suppose (i, j) not matched by Greedy

- at time j:
 - if i is already matched to j':
 - * charge v_i to (i, j')
 - (i has the same value for j and j').
 - else, j is already matched to i':
 - * when j arrived
 - * greedy choose i' instead of i (so $v_{i'} \ge v_i$)
 - * charge v_i to (i', j)
- each edge in Greedy charged at most twice
- all edges in OPT are accounted for ⇒ 2Greedy ≥ OPT.

Example:

- $v_1 = 100; S_1 = \{A\}$
- $v_2 = 101; S_2 = \{A, B\}$
- (1, A) not matched by greedy.

- charged to (2, A) with $v_2 > v_1 = 100$

• (2, B) is not matched by greedy.

- charged to (2, A) with value $v_2 = v_2 = 101$

• $2\text{Greedy} = 202 \ge 100 + 101 = \text{OPT}.$

Online Matching Mechanisms

Note: allocation rule of Greedy Online Matching is monotonic

Mech: Online Greedy Threshold Pricing

- run Online Greedy Algorithm.
- charge buyer minimum bid needed to win.

Thm: Truthtelling is DSE in Online Greedy Threshold Pricing Mechanism

Cor: Online Greedy Threshold is 2-approx in DSE.