CS 396: Online Markets

Lecture 15: Inference for Learning Bidders

Last Time:

- optimization of truthful auctions (cont).
- optimal first-price auctions.
- learning to price.
- learning to auction.

Today:

- value inference (econometrics)
- inference for learning bidders

Exercise: Auction Forensics

Recall:

- two bidders, $U[0,1]$ values, first-price auction
- Bayes-Nash equilibrium strategy: $\sigma(\mathrm{v})=\mathrm{v} / 2$

Setup:

- two bidders, $U[0,1]$ values, first-price auction
- bids are $b_{1}=0.1$ and $b_{2}=0.2$

Questions: What are the values

- of bidder 1 ?
- of bidder 2 ?

Value Inference

"infer values from bids"

Setup:

- have lots of bid data for current auction
- want to know if new auction is better

Challenge:

- bid data is in equilibrium for current auction.
- how to tell if new auction is good.

Failed Approach: simulate new auction on old bid data.

Example:

- four buyers, uniform values.
- current auction:
-2 item first-price auction
- revenue $=\mathbf{E}\left[2 \mathrm{v}_{(3)}\right]=2 \times 2 / 5=4 / 5$
- new auction:
- 3 item first-price auction
- revenue $=\mathbf{E}\left[3 \mathrm{v}_{(4)}\right]=3 \times 1 / 5=3 / 5$
- conclusion: 2-item revenue >3-item revenue
- on bids for 2-item FPA:
-2 -item revenue $=$ highest 2 bids
-3 -item revenue $=$ highest 3 bids
$-\Rightarrow 3$-item revenue >2-item revenue

Gold Standard Approach:

1. infer values from bids
2. calculate new equilibrium and revenue

Main Idea:

- bidders best respond to other bids
- other bids are in the data
- invert the best response function

Example: proportional bids

- two bidder
- proportional bids allocation:
$\tilde{x}_{i}(\mathbf{b})=\mathrm{b}_{i} / \sum_{j} \mathrm{~b}_{j}$
- winner pays bid.
- $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=2$

Q: what is v_{1} ?
Lemma: in winner-pays-bid mechanism with bid-allocation-rule $\tilde{x}(\cdot)$, can infer value as

$$
\mathrm{v}=\mathrm{b}+\tilde{x}(\mathrm{~b}) / \tilde{x}^{\prime}(\mathrm{b}) .
$$

Proof:
$\frac{d}{d \mathrm{~b}}[(\mathrm{v}-\mathrm{b}) \tilde{x}(\mathrm{~b})]=(\mathrm{v}-\mathrm{b}) \tilde{x}^{\prime}(\mathrm{b})-\tilde{x}(\mathrm{~b})=0 \Rightarrow$ $\mathrm{v}=\mathrm{b}+\tilde{x}(\mathrm{~b}) / \tilde{x}^{\prime}(\mathrm{b})$
$\mathbf{A}: \mathbf{v}_{1}=1+1 / 3 \times 9 / 2=1+3 / 2=5 / 2$

- $\mathrm{b}_{1}=1$
- $\tilde{x}_{1}\left(\mathrm{~b}_{1}\right)=1 / 3$
- $\tilde{x}_{1}^{\prime}\left(\mathrm{b}_{1}\right)=2 / 9$

Exercise: Proportional Bids

Recall:

- in winner-pays-bid mechanism with bid-allocation-rule $\tilde{x}(\cdot)$, can infer value as $\mathrm{v}=\mathrm{b}+\tilde{x}(\mathrm{~b}) / \tilde{x}^{\prime}(\mathrm{b})$.

Setup:

- proportional bids $\tilde{x}_{i}(\mathbf{b})=\mathrm{b}_{i} / \sum_{j} \mathrm{~b}_{j}$
- winner-pays-bid
- observed bids: $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=2$

Questions: What is the value v_{2} of bidder 2 ?

Inference for Learning Bidders

Model:

- bidders with static values: $\mathbf{v}=\left(\mathbf{v}_{1}, \ldots, \mathrm{v}_{m}\right)$
- mechanism in round i :
- bid allocation rule $\tilde{\boldsymbol{x}}^{i}$
- bid payment rule $\tilde{\boldsymbol{p}}^{i}$
- assumption: bidders have low regret

Recall: bidder j has ϵ_{j} regret for bids $\mathbf{b}^{0}, \ldots, \mathbf{b}^{n}$ and alternative bid z :

$$
\begin{aligned}
& \frac{1}{n} \sum_{i}\left[\mathbf{v}_{j} \tilde{x}_{j}^{i}\left(\mathbf{b}^{i}\right)-\tilde{p}_{j}\left(\mathbf{b}^{i}\right)\right] \\
& \geq \\
& \frac{1}{n}\left[\mathbf{v}_{j} \tilde{x}_{j}^{i}\left(\mathbf{z}, \mathbf{b}_{-j}^{i}\right)-\tilde{p}_{j}\left(\mathbf{z}, \mathbf{b}_{-j}^{i}\right)\right]-\epsilon_{j}
\end{aligned}
$$

Def: $\left(v_{j}, \epsilon_{j}\right)$ is rationalizable if $\mathbf{b}^{0}, \ldots, \mathbf{b}^{n}$ satisfies ϵ_{j} regret for value v_{j}.
Goal: identify rationalizable set.
PICTURE
Changing to bid z :

- $\Delta \tilde{x}_{j}(\mathbf{z})=\frac{1}{n} \sum_{i}\left[\tilde{x}_{j}^{i}\left(\mathbf{b}^{i}\right)-\tilde{x}_{j}^{i}\left(\mathbf{z}, \mathbf{b}_{-j}^{i}\right)\right]$
- $\Delta \tilde{p}_{j}(\mathbf{z})=\frac{1}{n} \sum_{i}\left[\tilde{p}_{j}^{i}\left(\mathbf{b}^{i}\right)-\tilde{p}_{j}^{i}\left(\mathbf{z}, \mathbf{b}_{-j}^{i}\right)\right]$

Rearranging: ϵ_{j} regret \Rightarrow forall z:
$\mathrm{v}_{j} \Delta \tilde{x}_{j}(\mathrm{z})-\Delta \tilde{p}_{j}(\mathrm{z}) \geq-\epsilon_{j}$
Conclusion: each z gives a linear constraint on
$\left(\mathrm{v}_{j}, \epsilon_{j}\right) \in R_{j}$

PICTURE

Note: the rationalizable set is convex.

Approach:

- true $\left(\mathrm{v}_{j}, \epsilon_{j}\right)$ is in rationalizable set.
- reasoanble approach to identify one:
$-\mathrm{v}_{j}$ that minimizes ϵ_{j}

