Exercise 14.1: Expected Payment

Recall

- allocation rule: $x(\mathrm{v})=\mathbf{P r}[$ bidder wins with value v$]$
- can view $x(\cdot)$ as cumulative distribution function of random price.

Exercise 14.1: Expected Payment

Setup:

- allocation rule $x(\mathrm{v})=\mathrm{v}$

Questions:

- what is expected price offered to the bidder?
- what is expected payment of bidder with value $v=1 / 2$?

Lecture 14: Revenue Maximization and Learning

Course work:

- Quiz 1, Weeks 1-3, due tonight.
- Project 4 assigned tonight.

Lecture 14: Revenue Maximization and Learning

Course work:

- Quiz 1, Weeks 1-3, due tonight.
- Project 4 assigned tonight.

Last Time:

- revenue of auctions (cont).
- virtual values.
- truthfulness and the revelation principle.
- optimization of truthful auctions.

Lecture 14: Revenue Maximization and Learning

Course work:

- Quiz 1, Weeks 1-3, due tonight.
- Project 4 assigned tonight.

Last Time:

- revenue of auctions (cont).
- virtual values.
- truthfulness and the revelation principle.
- optimization of truthful auctions.

Today:

- optimization of truthful auctions (cont).
- optimal first-price auctions.
- learning to price.
- learning to auction.

Exercise 14.2: Selling Introductions

Exercise 14.2: Selling Introductions

Setup:

- you are selling introductions
- two bidders, values $U[0,1]$
- your mechanism either
(1) introduces bidders to each other
(2) does not introduce them
- design a truthful mechanism to maximize your revenue.

Questions: What is outcome (introduce or not) in the revenue optimal mechanism when

- $\mathrm{v}_{1}=0.9$ and $\mathrm{v}_{2}=0.2$?
- $\mathrm{v}_{1}=0.8$ and $\mathrm{v}_{2}=0.1$?
- $\mathrm{v}_{1}=0.6$ and $\mathrm{v}_{2}=0.6 ?$

