CS 396: Online Markets

Lecture 13: Revenue Maximization (Cont.)

Last Time:

• revenue of auctions

Today:

- revenue of auctions (cont).
- virtual values.
- truthfulness and the revelation principle.
- optimization of truthful auctions.
- optimal first-price auctions.

Exercise: Allocation Rules

Recall:

- allocation rule:
- $x(\mathbf{v}) = \mathbf{Pr}[\text{bidder wins with value }\mathbf{v}]$
- probability of winning: $\mathbf{E}_{\mathbf{v}\sim F}[x(\mathbf{v})]$
- expected welfare: $\mathbf{E}_{\mathbf{v} \sim F}[\mathbf{v} \, x(\mathbf{v})]$

Setup:

- bidder's value is $v \sim U[0, 1]$
- allocation rules for mechanisms A and B

$$x_A(\mathbf{v}) = \mathbf{v}$$
 $x_B(\mathbf{v}) = \begin{cases} 1 & \text{if } \mathbf{v} > 1/2 \\ 0 & \text{otherwise.} \end{cases}$

Questions:

- what is probability that the bidder wins in A?
- what is expected welfare of A?
- what is probability that the bidder wins in B?
- what is expected welfare of *B*?

(Recall) Auction Revenue

Def: allocation rule: $x(v) = \mathbf{Pr}[$ bidder wins with value v]

Thm: revenue from
$$x$$
 is $\mathbf{E}\left[\left[\mathbf{v} - \frac{1 - F(\mathbf{v})}{f(\mathbf{v})}\right] x(\mathbf{v})\right]$

Recall: welfare is value of winner, expected welfare is $\mathbf{E}[v \mathbf{x}(v)]$

Def:

- virtual value is φ(v) = v 1-F(v)/f(v)
 virtual welfare is E[φ(v) x(v)]

Conclusion: expected revenue = expected virtual welfare

Q: how to maximize virtual surplus?

A: allocate if $\varphi(\mathbf{v}) \geq 0$, i.e., if $\mathbf{v} \geq \varphi^{-1}(0)$

Example:

- $v \sim U[0,1]$
- F(v) = v; f(v) = 1

•
$$\varphi(\mathbf{v}) = \mathbf{v} - \frac{1 - \mathbf{v}}{1} = 2\mathbf{v} - 1$$

DRAW PICTURE

• $\varphi^{-1}(0) = 1/2$

DRAW PICTURE

- what is virtual surplus? 1/4.
- what mechanism does this? post price of 1/2

Corollary: optimal single-buyer mechanism posts price $\varphi^{-1}(0)$.

Q: multiple bidders?

Exercise: Optimal Pricing, Redux

Setup:

- you have one item to sell
- your value for keeping the item is 1.
- buyer with value from exponential distribution

Questions:

• what price should you offer to maximize your expected utility?

Revelation Principle

"may as well consider mechanisms with truth telling equilibrium"

cf. second-price auction

Def: truthful mechanism is one where truthtelling is an equilibrium.

Thm: if exists good mechanism, exists good truthful mechanism.

Proof: by picture

DRAW PICTURE

Conclusion: in theory, sufficient to look for optimal truthful mechanism.

Thm: truthful mechanism can implement allocation rule x iff x is monotonicly non-decreasing.

DRAW PICTURE

- intuition 1: if it wasn't monotone, high-valued bidder would pretend to be low valued.
- intuition 2: cannot view non-monotone x as cdf of random price.

Geometry of Expected Payments:

• $p(\mathbf{v}) = \mathbf{v} x(\mathbf{v}) - \int_0^{\mathbf{v}} x(\mathbf{z}) d\mathbf{z}$

DRAW PICTURE

Welfare Maximization

- e.g., single-item auction
- second-price auction maximizes welfare in dominant strategy equilibrium

Framework for Optimization:

- 0. relax truthfulness
- 1. optimize objective
- 2. check truthfulness (a.k.a., monotonicity)

Example: k = 2 items, *n* bidders.

- 1. optimize objective give items to two bidders with highest values.
- 2. check truthfulness: yes

- \hat{v}_i is second highest other bid.
- *i* loses with bid below \hat{v}_i
- *i* wins with bid above \hat{v}_i
- \Rightarrow monotone.

Q: what truthful auction has this outcome?

A: (two item) third-price auction.

Revenue Maximization

Thm: in multi-bidder mechanisms, expected revenue equals expected virtual welfare.

- 0. relax truthfulness
- 1. optimize virtual welfare
- 2. check truthfulness

Example: single-item auction

- optimize virtual welfare:
 ⇒ allocate to bidder with highest positive virtual value.
- 2. check truthfulness: \Rightarrow monotone if φ are monotonicly nondecreasing.

e.g., bidder 1 wins if $\varphi_1(\mathsf{v}_1) \ge \max(\varphi_2(\mathsf{v}_2), 0)$, $\Rightarrow 1$ wins if $\mathsf{v}_1 \ge \max(\varphi_1^{-1}(\varphi_2(\mathsf{v}_2)), \varphi_1^{-1}(0))$

e.g., i.i.d. values (i.e., $\varphi_1 = \varphi_2 = \varphi$) $\Rightarrow 1$ wins if $\mathbf{v}_1 \ge \max(\mathbf{v}_2), \varphi^{-1}(0)$)

Q: what auction does this?

A: second-price auction with reserve $\hat{\mathbf{v}} = \varphi^{-1}(0)$

Cor: for i.i.d. buyers second-price auction with reserve $\varphi^{-1}(0)$ is revenue optimal

Example: two bidders, values U[0, 1]

- $\varphi^{-1}(0) = 1/2$
- (from example) 5/12 is optimal revenue.

Revenue Optimal First-price Auction.

"truthful auctions are often impractical"

Approach: find first-price auction with same allocation rule as optimal truthful auction.

Example:

• two bidders, uniform values

Q: what is revenue optimal first-price auction?

A: first-price auction with reserve 1/2

• winner is bidder with highest value over 1/2 $\Rightarrow x$ as second-price auction with reserve 1/2 \Rightarrow same expected virsual welfare