CS 396: Online Markets

Lecture 12: Revenue Maximization

Last Time:

- learning to bid (cont)
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Today:

- equilibrium of no regret learning (coarse correlated equilibrium)
- revenue of auctions

Exercise: Optimal Pricing

Setup:

- you have one item to sell.
- buyer with value from exponential distribution
- exponential distribution $\operatorname{cdf} F(z)=1-e^{-z}$

Questions:

- what price should you offer to maximize your expected revenue?

Auction Revenue

Recall:

- two bidders, values $U[0,1]$
- second-price auction
- bids $=$ values
$-\mathbf{E}[$ revenue $]=\mathbf{E}\left[\mathrm{b}_{(2)}\right]=\mathbf{E}\left[\mathrm{v}_{(2)}\right]=1 / 3$
- first-price auction
- bids $=$ half of values
$-\mathbf{E}[$ revenue $]=\mathbf{E}\left[\mathrm{b}_{(1)}\right]=\mathbf{E}\left[\mathrm{v}_{(1)} / 2\right]=1 / 3$
- same revenue

Def: second-price auction with reserve \hat{v}

- highest bidder with bid at least \hat{v} wins
- pays maximum of second-highest bid and \hat{v}

Same thing as if seller entered a bid of \hat{v}.

Example:

- two bidders, uniform values,
- reserve $\hat{\mathrm{v}}=1 / 2$.
- revenue calculation:

Case	Probability	expected revenue
$\mathrm{v}_{(2)}<\mathrm{v}_{(1)}<\hat{\mathrm{v}}$	$1 / 4$	0
$\mathrm{v}_{(2)}<\hat{\mathrm{v}}<\mathrm{v}_{(1)}$	$1 / 2$	$1 / 2$
$\hat{\mathrm{v}}<\mathrm{v}_{(2)}<\mathrm{v}_{(1)}$	$1 / 4$	$2 / 3$
- total: $1 / 4 \times 0+1 / 2 \times 1 / 2+1 / 4 \times 2 / 3=5 / 12>1 / 3$		

Note: by sometimes withholding the item, the seller can make more revenue.

Q: is there an auction with higher expected revenue?
A: no.

- Roger Myerson (1981) while at Kellogg
- 2007 Nobel prize in economics
- all you need to know is integration by parts!

Revenue Optimal Pricing

"optimal price to post a single buyer"

- buyer value $\vee \sim F$
- revenue from price $\hat{\mathrm{v}}: \hat{\mathrm{v}} \mathbf{P r}[\mathrm{v} \geq \hat{\mathrm{v}}]=\hat{\mathrm{v}}(1-F(\hat{\mathrm{v}}))$
- to optimize $\frac{d}{d \hat{v}}[\hat{v}(1-F(\hat{v}))]=1-F(\hat{v})-\hat{v} f(\hat{v})=0$
- note: tradeoff $\hat{\mathrm{v}}$ with probability of sale $1-F(\hat{\mathrm{v}})$.

Example:

- $\mathrm{v} \sim U[0,1]$, i.e., $F(\mathrm{z})=\mathrm{z}$
- $\frac{d}{d \hat{v}}[\hat{\mathrm{v}}(1-\hat{\mathrm{v}})]=1-2 \hat{\mathrm{v}}=0$
- $\Rightarrow \hat{v}=1 / 2$.
- expected revenue is $1 / 2 \times(1-F(1 / 2))=1 / 4$.
\qquad

Exercise: Pricing Lotteries

Setup:

- buyer with value $U[0,1]$
- menu of options:
(a) price of 0: receive nothing
(b) price of $1 / 6$: receive item with probability $1 / 2$
(c) price of $1 / 2$: receive item with probability 1

Questions:

- what value of buyer is indifferent between (a) and (b)?
- what value of buyer is indifferent between (b) and (c)?
- what is expected revenue when buyer buys preferred option?

Revenue Analysis of Lotteries

"e.g., in multi-bidder auction, outcome depends on other bids"

Def: allocation rule:
$x(\mathrm{v})=\mathbf{P r}$ [bidder with value v wins]
Def: posted pricing implementation of x :

- draw price $\hat{\mathrm{v}}$ from distirbution $G(\mathrm{z})=x(\mathrm{z})$
- $x(\mathbf{z})=\operatorname{Pr}[$ bidder offered price $\hat{\mathrm{v}} \leq \mathrm{v}]=G(\mathbf{z})$

Lemma: revenue from x is $\int_{0}^{\infty} \mathrm{z}(1-F(\mathrm{z})) x^{\prime}(\mathrm{z}) d \mathrm{z}$.

Proof:

- density function for \hat{v} is $x^{\prime}(\hat{\mathrm{v}})$.
- revenue if offer price $\hat{\mathrm{v}}$ is $\hat{\mathrm{v}}(1-F(\hat{\mathrm{v}}))$
- definition of expectation.

Thm: revenue from x is $\mathbf{E}\left[\left[\mathrm{v}-\frac{1-F(\mathrm{v})}{f(\mathrm{v})}\right] x(\mathrm{v})\right]$.
Recall: integration by parts
$\int_{a}^{b} f(z) g^{\prime}(z) d z=[f(z) g(z)]_{a}^{b}-\int_{a}^{b} f^{\prime}(z) g(z) d z$
Proof:

- integration by parts:

$$
\int_{0}^{\infty} \mathrm{z}(1-F(\mathrm{z})) x^{\prime}(\mathrm{z}) d \mathrm{z}
$$

$$
=[\mathbf{z}(1-F(\mathbf{z})) x(\mathbf{z})]_{0}^{\infty}-\int_{0}^{\infty}[1-F(\mathbf{z})-\mathbf{z} f(\mathbf{z})] x(\mathbf{z}) d \mathbf{z}
$$

- simplify with $\mathbf{z}(1-F(z))=0$ at $\mathbf{z}=0$ and $\mathbf{z}=\infty$
- factor out density to write as expectation:

$$
\mathbf{E}_{\mathrm{v} \sim F}\left[\left[\mathrm{v}-\frac{1-F(\mathrm{v})}{f(\mathrm{v})}\right] x(\mathrm{v})\right]
$$

Recall: welfare is value of winner, expected welfare is $\mathbf{E}[\mathbf{v} x(\mathrm{v})]$
Def:

- virtual value is $\varphi(\mathrm{v})=\mathrm{v}-\frac{1-F(\mathrm{v})}{f(\mathrm{v})}$
- virtual welfare is $\mathbf{E}[\varphi(\mathrm{v}) x(\mathrm{v})]$

Conclusion: expected revenue $=$ expected virtual welfare

Q: how to maximize virtual surplus?
A: allocate if $\varphi(v) \geq 0$, i.e., if $v \geq \varphi^{-1}(0)$
Corollary: optimal single-buyer mechanism posts price $\varphi^{-1}(0)$.
Conclusion: selling lotteries does not improve revenue.

Example:

- $\mathrm{v} \sim U[0,1]$
- $F(\mathrm{v})=\mathrm{v} ; f(\mathrm{v})=1$
- $\varphi(\mathrm{v})=\mathrm{v}-\frac{1-\mathrm{v}}{1}=2 \mathrm{v}-1$

DRAW PICTURE

- $\varphi^{-1}(0)=1 / 2$

A: optimal mechanism
Q: what is virtual surplus? A: $1 / 4$.
Q: what mechanism does this? A: post price of $1 / 2$

Multi-bidder Mechanisms

Thm: in multi-bidder mechanisms, expected revenue equals expected virtual welfare.

Q: how to maximize virtual welfare in single-item auction?

A: allocate to bidder with highest positive virtual value.
e.g., bidder 1 wins if $\varphi_{1}\left(\mathrm{v}_{1}\right) \geq \max \left(\varphi_{2}\left(\mathrm{v}_{2}\right), 0\right)$, $\Rightarrow 1$ wins if $\mathrm{v}_{1} \geq \max \left(\varphi_{1}^{-1}\left(\varphi_{2}\left(\mathrm{v}_{2}\right)\right), \varphi_{1}^{-1}(0)\right)$
e.g., i.i.d. values (i.e., $\varphi_{1}=\varphi_{2}=\varphi$)
$\Rightarrow 1$ wins if $\left.\mathrm{v}_{1} \geq \max \left(\mathrm{v}_{2}\right), \varphi^{-1}(0)\right)$
Q: what auction does this?
A: second-price auction with reserve $\hat{v}=\varphi^{-1}(0)$
Cor: for i.i.d. buyers second-price auction with reserve $\varphi^{-1}(0)$ is revenue optimal

Example: two bidders, values $U[0,1]$

- $\varphi^{-1}(0)=1 / 2$
- (from example) $5 / 12$ is optimal revenue.

Equilibrium of No-regret Learning

"outcomes of games under learning"

Def: coarse correlated equilibrium (CCE)

- mediator offers joint distributions of actions (r, c)
- players either
- follow mediator
- pick any fixed outcome
- CCE if best response is to follow mediator

Thm: play is no-regret iff emprical distribution of play is CCE.

- fix sequence $\left(\left(r^{0}, c^{0}\right), \ldots,\left(r^{n}, c^{n}\right)\right)$
- no-regret for player R , for all actions r^{*} of R : $\sum_{i} R_{r^{i}, c^{i}} \geq \sum_{i} R_{r^{*}, c^{i}}$
- consider mediator:
- pick i uniformly from round $\{1, \ldots, n\}$
- recommend r^{i} to R and c^{i} to C.
- no-regret for R and $\mathrm{C} \Leftrightarrow$ mediator is CCE.

