Exercise 12.1: Optimal Pricing

Exercise 12.1: Optimal Pricing

Setup:

- you have one item to sell.
- buyer with value from exponential distribution
- exponential distribution $\operatorname{cdf} F(z)=1-e^{-z}$

Questions:

- What price should you offer to maximize your expected revenue?

Lecture 12: Revenue Maximization

Course work:

- Project 3 due Wednesday.
- Quiz 1, Weeks 1-3, assigned Thursday, due Friday.
- Peer review 3, assigned Saturday, due Monday.

Lecture 12: Revenue Maximization

Course work:

- Project 3 due Wednesday.
- Quiz 1, Weeks 1-3, assigned Thursday, due Friday.
- Peer review 3, assigned Saturday, due Monday.

Last Time:

- learning to bid (cont)
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Lecture 12: Revenue Maximization

Course work:

- Project 3 due Wednesday.
- Quiz 1, Weeks 1-3, assigned Thursday, due Friday.
- Peer review 3, assigned Saturday, due Monday.

Last Time:

- learning to bid (cont)
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Today:

- equilibrium of no-regret learning (coarse correlated equilibrium)
- revenue of auctions

Exercise 12.2: Pricing Lotteries

Exercise 12.2: Pricing Lotteries

Setup:

- buyer with value $U[0,1]$
- menu of options:
(1) price of 0 : receive nothing
(2) price of $1 / 6$: receive item with probability $1 / 2$
(3) price of $1 / 2$: receive item with probability 1

Questions:

- what value of buyer is indifferent between options (1) and (2)?
- what value of buyer is indifferent between options (2) and (3)?
- what is expected revenue when buyer buys preferred option?

