CS 396: Online Markets

Lecture 11: Learning to Bid (Cont)

Last Time:

- learning to bid
- discritization
- full feedback

Today:

- learning to bid (cont)
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Exercise: Discretization

Setup:

- continuous function f(x)
- bounded derivative $f'(x) \leq 1$
- linear ϵ -discritization of [0, 1]: $X_{\epsilon} = \{x_0, \dots, x_k\}$ with $x_j = \epsilon j$ and $k = 1/\epsilon$

Questions:

- for ε = 0.5, bound max_{x∈[0,1]} f(z) - max_{x∈Xε} f(x)
 for ε = 0.1, bound
- for $\epsilon = 0.1$, bound $\max_{x \in [0,1]} f(z) - \max_{x \in X_{\epsilon}} f(x)$

Recall Online Bidding

"bidding in a repeated auction"

Model:

- repeated first-price auction
 - highest bidder wins (random tie-breaking)winner pays bid
- static value $v \in [1, h]$
- geometric discretization: $b_j = v (1 + \epsilon)^j$ for $k = \log_{1+\epsilon} h \approx \frac{1}{\epsilon} \ln h$
- highest competing bid in day *i*: $\hat{\mathbf{b}}^{i}$
- partial feedback: learn "win" or "lose"

Idea:

- actions \Leftrightarrow bids
- with $\mathbf{b}_j = \mathbf{v} (1 + \epsilon)^j$
 - if win, utility is $\mathbf{v} \mathbf{b}_j = (1 + \epsilon)^j$
 - if lose, utility is 0.
 - utility is bounded by $(1+\epsilon)^j$

Q: how to use non-uniform bounds to improve learning rates?

Partial Feedback

"faster learning for partial feedback"

Recall: MAB Reduction to OLA

In round i:

- 1. $\tilde{\pi} \leftarrow \text{OLA}$
- 2. draw $j^i \sim \pi$ with

$$\pi_j^i = (1-\epsilon)\,\tilde{\pi}_j^i + \epsilon/k$$

- 3. take action j^i
- 4. report $\tilde{\mathbf{v}}$ to OLA with

$$\tilde{\mathbf{v}}_{j}^{i} = \begin{cases} \mathbf{v}_{j}^{i}/\pi_{j}^{i} & \text{if } j = j^{i} \\ 0 & \text{otherwise} \end{cases}$$

Recall Thm: for payoffs $\mathbf{v}_j^i \in [0, h]$ $\mathbf{E}[\text{OLA}] \ge (1 - \epsilon) \text{ OPT } -\tilde{h}/\epsilon \ln k$

 \Rightarrow

 $\mathbf{E}[\mathrm{MAB}] \ge (1-2\epsilon) \operatorname{OPT} - {}^{h}{}^{k}\!/\!\epsilon^{2}\ln k$

Recall Analysis:

- "Challenge 2": keep \tilde{h} small
- "Idea 2": pick random action with some minimal probability ϵ/k
- "Lemma 2": if $\pi_i^i \geq \epsilon/k$ then $\tilde{\mathbf{v}}_i^i \leq \tilde{h} = \frac{kh}{\epsilon}$

Q: improve this with $h_j = (1 + \epsilon)^j$?

A: geometric exploration

- explore bid $\mathbf{b}_j = (1+\epsilon)^j$ with prob. $\propto (1+\epsilon)^j$
- (recall) $H = \sum_{i=0}^{k} (1+\epsilon)^{i} \approx h/\epsilon$
- $\tilde{h}_j = (1+\epsilon)^j \frac{H}{\epsilon(1+\epsilon)^j} \approx h/\epsilon^2$
- $k = \frac{1}{\epsilon} \ln h$

Thm: MAB with geometric exploration $\mathbf{E}[\text{MAB}] \ge (1 - 2\epsilon) \operatorname{OPT} - \frac{h}{\epsilon^3} \ln(\frac{1}{\epsilon} \ln h)$

Exercise: "Battle of the Sexes" Times Two

Setup:

- you are the row player.
- payoffs:

	Opera	Football
Opera	4, 2	0 , 0
Football	0 , 0	2, 4

• you will play two games sequentially with the same opponent.

Questions:

- In Game 1, you play (Opera, Opera); how do you play in Game 2?
- In Game 1, you play (Football, Football); how do you play in Game 2?

Repeated Games

"the same game is repeated many times"

Model:

- two players (e.g.)
- *n* days.
- bimatrix game given by payoffs $R,\!C$
- each day *i*:
 - R and C choose actions r^i and c^i - observe results of game.
- payoffs are averaged over *n* days. – e.g., R's payoff: $\frac{1}{n} \sum_{i=1}^{n} R_{r^{i},c^{i}}$

Recall: mixed Nash: players indepently randomize

Q: would learning in repeated game converge to independent randomization?

 $\mathbf{A} \text{:} \text{not generally.}$

Equilibrium of No-regret Learning

"outcomes of games under learning"

Def: coarse correlated equilibrium (CCE)

- mediator offers joint distributions of actions (r, c)
- players either
 - follow mediator
 - pick any fixed outcome
- CCE if best response is to follow mediator

Example: rock-paper-sissors no-ties

	Rock	Paper	Sissors
Rock	-6 ,-6	-1 ,1	1 ,-1
Paper	1 ,-1	-6 ,-6	-1 ,1
Sissors	-1 ,1	1 ,-1	-6 ,-6

Q: Nash?

A: uniform mixing

Q: other CCE?

A: uniform mixing over $\{(R, P), (R, S), (P, R), (P, S), (S, R), (S, P)\}$

- payoff from following mediator: 0
- payoff from any fixed action: $0\times 2/3-6\times 1/3=-2$

Thm: play is no-regret iff emprical distribution of play is CCE.

- fix sequence $((r^0, c^0), ..., (r^n, c^n))$
- **no-regret** for player R, for all actions r^* of R: $\sum_i R_{r^i,c^i} \ge \sum_i R_{r^*,c^i}$
- consider mediator:
 - pick *i* uniformly from round $\{1, \ldots, n\}$ - recommend r^i to R and c^i to C.
- no-regret for R and C \Leftrightarrow mediator is CCE.