Exercise 11.1: Discretization

Exercise 11.1: Discretization

Setup:

- continuous function $f(x)$
- bounded derivative $f^{\prime}(x) \leq 1$
- linear ϵ-discritization of $[0,1]$:

$$
X_{\epsilon}=\left\{x_{0}, \ldots, x_{k}\right\} \text { with } x_{j}=\epsilon j \text { and } k=1 / \epsilon .
$$

Questions:

- for $\epsilon=0.5$, bound

$$
\max _{x \in[0,1]} f(z)-\max _{x \in X_{\epsilon}} f(x)
$$

- for $\epsilon=0.1$, bound

$$
\max _{x \in[0,1]} f(z)-\max _{x \in X_{\epsilon}} f(x)
$$

Lecture 11: Learning to Bid (Cont)

Due Wednesday: Project 3

Lecture 11: Learning to Bid (Cont)

Due Wednesday: Project 3

Last Time:

- learning to bid
- discretization
- full feedback

Lecture 11: Learning to Bid (Cont)

Due Wednesday: Project 3
Last Time:

- learning to bid
- discretization
- full feedback

Today:

- learning to bid (cont)
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Exercise 11.2: "Battle of the Sexes" Times Two

Exercise 11.2: "Battle of the Sexes" Times Two

Setup:

- you are the row player.
- payoffs:

	Opera	Football
Opera	$\mathbf{4}, 2$	$\mathbf{0}, 0$
Football	$\mathbf{0}, 0$	$\mathbf{2 , 4}$

- you will play two games sequentially with the same opponent.

Questions:

- In Game 1, you play (Opera, Opera); how do you play in Game 2?
- In Game 1, you play (Football, Football); how do you play in Game 2?

