CS 396: Online Markets

Lecture 10: Learning to Bid

Last Time:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomplete information analysis (Bayes-Nash equilbrium)

Today:

- learning to bid
- full feedback
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Exercise: Optimal Bid

Recall:

- cumulative distribution function: $F_X(z) = \mathbf{Pr}[X < z]$
- uniform distribution on [0,1]: $F_X(z) = z$
- first-price auction: highest bidder wins, winner pays bid.

Setup:

- you are bidding in a first-price auction
- other bidders with i.i.d. uniform bids on [0,1]

Questions: your value is v = 1/2

- What should you bid against one other bidder?
- What should you bid against two other bidders?

Online Bidding

"bidding in a repeated auction"

Model:

- repeated first-price auction
 - highest bidder wins (random tie-breaking)
 - winner pays bid
- static value $v \in [1, h]$
- in round *i*:
 - bid b^i
 - competing bid $\hat{\mathbf{b}}^i \in [1, h]$
 - win if $b^i > \hat{b}^i$
 - * payoff: $v b^i$
 - lose otherwise
 - * payoff: 0
- feedback model:

- full: learn
$$\hat{\mathbf{b}}_{i}^{i}$$

- partial: learn "win" or "lose"

Discretization

"discretize bid space, run learning algorithm"

Examples: for bidder with value v

- linear discretization: $\mathbf{b}_j = \mathbf{v} \epsilon j$ for $k = h/\epsilon$
- geometric discretization: $b_j = v (1 + \epsilon)^j$ for $k = \log_{1+\epsilon} h \approx \frac{1}{\epsilon} \ln h$

Note: e.g.,

- with $\mathbf{b}_j = \mathbf{v} (1 + \epsilon)^j$,
- on winning utility is $\mathbf{v} \mathbf{b}_j = (1 + \epsilon)^j$.

Recall Thm: *n* rounds, *k* actions, payoffs in [0, h]: EW $\geq (1 - \epsilon) \operatorname{OPT} - \frac{h}{\epsilon} \ln k$

Cor: EW and linear discretization is: EW $\geq (1 - 2\epsilon) \operatorname{OPT} - \frac{h}{\epsilon^2} \ln h/\epsilon$

Cor: EW and geometric discritization is: EW $\geq (1 - 2\epsilon) \operatorname{OPT} - \frac{h}{\epsilon^2} \ln \frac{1}{\epsilon} \ln h$

Can solve for ϵ to optimize per-round regret

Q: can these bounds be improved?

A: yes

Idea: non-uniform bounds on payoffs

- action j is bid b_j , payoff is either 0 or b_j
- upper bound of *h* is lose.

Full Feedback

"faster learning for full feedback"

Recall: Follow the Perturbed Leader (FTPL)

- learning rate ϵ
- hallucinate: $v_j^0 = h \times$ "num tails of ϵ -bias coin flipped in a row"
- let $V_j^i = \sum_{r=1}^i v_j^r$
- in round *i* choose: $j^i = \operatorname{argmax}_j \mathsf{v}_j^0 + \mathsf{V}_j^{i-1}$

Recall Analysis:

- stability lemma: FTPL and BTPL do the same thing w.p. (1ϵ)
- small perturbation: $BTPL \ge OPT - \mathbf{E}[MAXPTRB]$

Idea: non-uniform hallucination:

- payoffs of action j are in [0,h_j]\$
- hallucinate: $\mathsf{v}_j^0=h_j\times$ "num tails of $\epsilon\text{-bias}$ coin flipped in a row"

Lemma: hallucination for geometric discritizing $\mathbf{E}[\text{MAXPTRB}] \leq h/\epsilon^2$

Proof:

- **E**[geometric with rate ϵ] = $1 \epsilon/\epsilon$
- $\mathbf{E}\left[\max_{j} \mathsf{v}_{j}^{0}\right] \leq \mathbf{E}\left[\sum_{j} \mathsf{v}_{j}^{0}\right] = \sum_{j} h_{j}(1-\epsilon)/\epsilon$
- geometric $h_j = (1 + \epsilon)^j$
- $\sum_{j=0}^{k} (1+\epsilon)^j \le h \sum_{j=0}^{\infty} (1+\epsilon)^{-j} \le h \frac{1+\epsilon}{\epsilon}$
- $\mathbf{E}[\text{MAXPTRB}] \le h/\epsilon^2$

Thm: FTPL and geometric discritization is $ALG \ge (1 - 2\epsilon) \operatorname{OPT} - \frac{h^2}{\epsilon}^2$

Partial Feedback

"faster learning for partial feedback"

Recall: MAB Reduction to OLA

In round i:

1.
$$\pi \leftarrow \text{OLA}$$

2. draw $j^i \sim \tilde{\pi}$ with

$$\tilde{\pi}_j^i = (1 - \epsilon) \, \pi_j^i + \epsilon/k$$

- 3. take action j^i
- 4. report $\tilde{\mathbf{v}}$ to OLA with

$$\tilde{\mathbf{v}}_{j}^{i} = \begin{cases} \mathbf{v}_{j}^{i}/\pi_{j}^{i} & \text{if } j = j^{i} \\ 0 & \text{otherwise.} \end{cases}$$

Recall Thm:

 $\mathbf{E}[MAB] \ge (1 - 2\epsilon) \operatorname{OPT} - \frac{h k}{\epsilon^2} \ln k$

Recall Analysis:

Challenge 2: keep h small

Idea 2: pick random action with some minimal probability ϵ/k

Lemma 2: if $\pi_i^i \ge \epsilon/k$ then $\tilde{v}_i^i \le \tilde{h} = \frac{kh}{\epsilon}$

Q: improve this with $h_i = (1 + \epsilon)^j$?

A: geometric exploration

- explore bid $b_j = (1 + \epsilon)^j$ with prob. $\propto (1 + epsilon)^j$
- $H = \sum_{j=0}^{k} (1+\epsilon)^j \approx h/\epsilon$
- $\tilde{h}_j = (1+\epsilon)^j H/\epsilon (1+\epsilon)^j \approx h/\epsilon^2$

Thm: MAB with geometric exploration $\mathbf{E}[MAB] \ge (1 - 3\epsilon) \operatorname{OPT} - \frac{h}{\epsilon^3} \ln h / \epsilon^2$

Equilibrium of No-regret Learning

"outcomes of games under learning"

Recall: mixed Nash: players indepently randomize

Q: would learning in repeated game converge to independent randomization?

A: not generally.

Defn: coarse correlated equilibrium (CCE)

- mediator offers joint distributions of actions (a_R, a_C)
- players either
 - follow mediator
 - pick any fixed outcome
- CCE if best response is to follow mediator

Example: rock-paper-sissors

	Rock	Paper	Sissors
Rock	-6 ,-6	-1 ,1	1 ,-1
Paper	1 ,-1	-6 ,-6	-1 ,1
Sissors	-1 ,1	1 ,-1	-6 ,-6

 $\mathbf{Q:} \operatorname{Nash?}$

A: uniform mixing

Q: other CCE?

- payoff from following mediator: 0
- payoff from any fixed action: $0 \times 2/3 6 \times 1/3 = -2$

Thm: play is no-regret iff distribution of play is CCE.

- suppose $((a_R^0, a_C^0), \dots, (a_R^n, a_C^n))$ is no-regret
- no-regret for player R, for all a_R^* : $\sum_i R_{a_R^i, a_C^i} \ge \sum_i R_{a_R^*, a_C^i}$
- consider mediator:
 - pick *i* uniformly from round $\{1, \ldots, n\}$
 - recommend a_R^i to R and a_C^i to C.
- no-regret \Leftrightarrow CCE.