
CS 396: Online Markets

Lecture 10: Learning to Bid
Last Time:

• auction theory
• second-price auction
• first-price auction
• complete information analysis

(Nash equilibrium)
• incomplete information analysis

(Bayes-Nash equilbrium)

Today:

• learning to bid
• full feedback
• partial feedback
• equilibrium of no-regret learning (coarse corre-

lated equilibrium)

Exercise: Optimal Bid
Recall:

• cumulative distribution function: FX(z) =
Pr[X < z]

• uniform distribution on [0, 1]: FX(z) = z
• first-price auction: highest bidder wins, winner

pays bid.

Setup:

• you are bidding in a first-price auction
• other bidders with i.i.d. uniform bids on [0, 1]

Questions: your value is v = 1/2

• What should you bid against one other bidder?
• What should you bid against two other bidders?

Online Bidding
“bidding in a repeated auction”

Model:

• repeated first-price auction

– highest bidder wins (random tie-breaking)
– winner pays bid

• static value v ∈ [1, h]

• in round i:

– bid bi
– competing bid b̂

i
∈ [1, h]

– win if bi > b̂
i

∗ payoff: v − bi
– lose otherwise

∗ payoff: 0

• feedback model:

– full: learn b̂
i

i

– partial: learn “win” or “lose”

Discretization
“discretize bid space, run learning algorithm”

Examples: for bidder with value v

• linear discretization: bj = v − ε j for k = h/ε

• geometric discretization: bj = v − (1 + ε)j for
k = log1+ε h ≈ 1

ε ln h

Note: e.g.,

• with bj = v − (1 + ε)j ,
• on winning utility is v − bj = (1 + ε)j .

Recall Thm: n rounds, k actions, payoffs in [0, h]:
EW ≥ (1− ε) OPT−h/ε ln k

Cor: EW and linear discretization is:
EW ≥ (1− 2ε) OPT− h

ε2 ln h/ε

Cor: EW and geometric discritization is:
EW ≥ (1− 2ε) OPT− h

ε2 ln 1
ε ln h

Can solve for ε to optimize per-round regret

Q: can these bounds be improved?
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A: yes

Idea: non-uniform bounds on payoffs

• action j is bid bj , payoff is either 0 or bj
• upper bound of h is lose.

Full Feedback
“faster learning for full feedback”

Recall: Follow the Perturbed Leader (FTPL)

• learning rate ε

• hallucinate: v0
j = h× “num tails of ε-bias coin

flipped in a row”

• let Vij =
∑i
r=1 vrj

• in round i choose: ji = argmaxj v0
j + Vi−1

j

Recall Analysis:

• stability lemma: FTPL and BTPL do the same
thing w.p. (1− ε)

• small perturbation:
BTPL ≥ OPT−E[MAXPTRB]

Idea: non-uniform hallucination:

• payoffs of action j are in [0,h_j]$

• hallucinate: v0
j = hj× “num tails of ε-bias coin

flipped in a row”

Lemma: hallucination for geometric discritizing
E[MAXPTRB] ≤ h/ε2

Proof:

• E[geometric with rate ε] = 1−ε/ε

• E
[
maxj v0

j

]
≤ E

[∑
j v0

j

]
=
∑
j hj(1− ε)/ε

• geometric hj = (1 + ε)j

•
∑k
j=0(1 + ε)j ≤ h

∑∞
j=0(1 + ε)−j ≤ h 1+ε

ε

• E[MAXPTRB] ≤ h/ε2

Thm: FTPL and geometric discritization is
ALG ≥ (1− 2ε) OPT−hε
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Partial Feedback
“faster learning for partial feedback”

Recall: MAB Reduction to OLA

In round i:

1. π ← OLA

2. draw ji ∼ π̃ with

π̃ij = (1− ε)πij + ε/k

3. take action ji

4. report ṽ to OLA with

ṽij =
{

vi
j/πi

j if j = ji

0 otherwise.

Recall Thm:
E[MAB] ≥ (1− 2ε) OPT−h k/ε2 ln k

Recall Analysis:

Challenge 2: keep h̃ small

Idea 2: pick random action with some minimal prob-
ability ε/k

Lemma 2: if πij ≥ ε/k then ṽij ≤ h̃ = kh/ε

Q: improve this with hj = (1 + ε)j?

A: geometric exploration

• explore bid bj = (1 + ε)j with prob. ∝ (1 +
epsilon)j

• H =
∑k
j=0(1 + ε)j ≈ h/ε

• h̃j = (1 + ε)j H/ε(1 + ε)j ≈ h/ε2

Thm: MAB with geometric exploration E[MAB] ≥
(1− 3ε) OPT−h/ε3 ln h/ε2
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Equilibrium of No-regret Learning
“outcomes of games under learning”

Recall: mixed Nash: players indepently randomize

Q: would learning in repeated game converge to inde-
pendent randomization?

A: not generally.

Defn: coarse correlated equilibrium (CCE)

• mediator offers joint distributions of actions
(aR, aC)

• players either

– follow mediator
– pick any fixed outcome

• CCE if best response is to follow mediator

Example: rock-paper-sissors

Rock Paper Sissors
Rock -6,-6 -1,1 1,-1
Paper 1,-1 -6,-6 -1,1
Sissors -1,1 1,-1 -6,-6

Q: Nash?

A: uniform mixing

Q: other CCE?

A: uniform mixing over
{(R,P ), (R,S), (P,R), (P, S), (S,R), (S, P )}

• payoff from following mediator: 0
• payoff from any fixed action: 0× 2/3− 6× 1/3 =
−2

Thm: play is no-regret iff distribution of play is CCE.

• suppose ((a0
R, a

0
C), . . . , (anR, anC)) is no-regret

• no-regret for player R, for all a∗R:∑
iRai

R
,ai

C
≥
∑
iRa∗

R
,ai

C

• consider mediator:

– pick i uniformly from round {1, . . . , n}
– recommend aiR to R and aiC to C.

• no-regret ⇔ CCE.
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