CS 396: Online Markets

Lecture 10: Learning to Bid

Last Time:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomplete information analysis (Bayes-Nash equilbrium)

Today:

- learning to bid
- full feedback
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)

Exercise: Optimal Bid

Recall:

- cumulative distribution function: $F_{X}(\mathrm{z})=$ $\operatorname{Pr}[X<\mathrm{z}]$
- uniform distribution on $[0,1]: F_{X}(z)=z$
- first-price auction: highest bidder wins, winner pays bid.

Setup:

- you are bidding in a first-price auction
- other bidders with i.i.d. uniform bids on $[0,1]$

Questions: your value is $v=1 / 2$

- What should you bid against one other bidder?
- What should you bid against two other bidders?

Online Bidding

"bidding in a repeated auction"

Model:

- repeated first-price auction
- highest bidder wins (random tie-breaking)
- winner pays bid
- static value $v \in[1, h]$
- in round i :
$-\operatorname{bid} b^{i}$
- competing bid $\hat{b}^{i} \in[1, h]$
- win if $\mathrm{b}^{i}>\hat{\mathrm{b}}^{i}$

$$
\text { * payoff: } v-b^{i}
$$

- lose otherwise
* payoff: 0
- feedback model:
- full: learn \hat{b}_{i}^{i}
- partial: learn "win" or "lose"

Discretization

"discretize bid space, run learning algorithm"
Examples: for bidder with value v

- linear discretization: $\mathrm{b}_{j}=\mathrm{v}-\epsilon j$ for $k=h / \epsilon$
- geometric discretization: $\mathrm{b}_{j}=\mathrm{v}-(1+\epsilon)^{j}$ for $k=\log _{1+\epsilon} h \approx \frac{1}{\epsilon} \ln h$

Note: e.g.,

- with $\mathrm{b}_{j}=\mathrm{v}-(1+\epsilon)^{j}$,
- on winning utility is $v-b_{j}=(1+\epsilon)^{j}$.

Recall Thm: n rounds, k actions, payoffs in $[0, h]$:
$\mathrm{EW} \geq(1-\epsilon) \mathrm{OPT}-h / \epsilon \ln k$
Cor: EW and linear discretization is:
$\mathrm{EW} \geq(1-2 \epsilon) \mathrm{OPT}-\frac{h}{\epsilon^{2}} \ln h / \epsilon$
Cor: EW and geometric discritization is:
$\mathrm{EW} \geq(1-2 \epsilon) \mathrm{OPT}-\frac{h}{\epsilon^{2}} \ln \frac{1}{\epsilon} \ln h$
Can solve for ϵ to optimize per-round regret
Q: can these bounds be improved?

A: yes
Idea: non-uniform bounds on payoffs

- action j is bid b_{j}, payoff is either 0 or b_{j}
- upper bound of h is lose.

Full Feedback

"faster learning for full feedback"
Recall: Follow the Perturbed Leader (FTPL)

- learning rate ϵ
- hallucinate: $\mathrm{v}_{j}^{0}=h \times$ "num tails of ϵ-bias coin flipped in a row"
- let $\mathrm{V}_{j}^{i}=\sum_{r=1}^{i} \mathrm{v}_{j}^{r}$
- in round i choose: $j^{i}=\operatorname{argmax}_{j} \mathrm{v}_{j}^{0}+\mathrm{V}_{j}^{i-1}$

Recall Analysis:

- stability lemma: FTPL and BTPL do the same thing w.p. $(1-\epsilon)$
- small perturbation: $\mathrm{BTPL} \geq \mathrm{OPT}-\mathbf{E}[$ MAXPTRB $]$

Idea: non-uniform hallucination:

- payoffs of action j are in $\left[0, \mathrm{~h}_{\mathrm{j}} \mathrm{j}\right] \$$
- hallucinate: $\mathrm{v}_{j}^{0}=h_{j} \times$ "num tails of ϵ-bias coin flipped in a row"

Lemma: hallucination for geometric discritizing $\mathbf{E}[$ MAXPTRB $] \leq h / \epsilon^{2}$

Proof:

- $\mathbf{E}[$ geometric with rate $\epsilon]=1-\epsilon / \epsilon$
- $\mathbf{E}\left[\max _{j} \mathrm{v}_{j}^{0}\right] \leq \mathbf{E}\left[\sum_{j} \mathrm{v}_{j}^{0}\right]=\sum_{j} h_{j}(1-\epsilon) / \epsilon$
- geometric $h_{j}=(1+\epsilon)^{j}$
- $\sum_{j=0}^{k}(1+\epsilon)^{j} \leq h \sum_{j=0}^{\infty}(1+\epsilon)^{-j} \leq h \frac{1+\epsilon}{\epsilon}$
- $\mathbf{E}[$ MAXPTRB $] \leq h / \epsilon^{2}$

Thm: FTPL and geometric discritization is $\mathrm{ALG} \geq(1-2 \epsilon) \mathrm{OPT}-\frac{h}{\epsilon}^{2}$

Partial Feedback

"faster learning for partial feedback"
Recall: MAB Reduction to OLA
In round i :

1. $\pi \leftarrow \mathrm{OLA}$
2. draw $j^{i} \sim \tilde{\boldsymbol{\pi}}$ with

$$
\tilde{\pi}_{j}^{i}=(1-\epsilon) \pi_{j}^{i}+\epsilon / k
$$

3. take action j^{i}
4. report $\tilde{\mathbf{v}}$ to OLA with

$$
\tilde{\mathrm{v}}_{j}^{i}= \begin{cases}\mathrm{v}_{j}^{i} / \pi_{j}^{i} & \text { if } j=j^{i} \\ 0 & \text { otherwise }\end{cases}
$$

Recall Thm:

$\mathbf{E}[\mathrm{MAB}] \geq(1-2 \epsilon) \mathrm{OPT}-h k / \epsilon^{2} \ln k$

Recall Analysis:

Challenge 2: keep \tilde{h} small
Idea 2: pick random action with some minimal probability ϵ / k
Lemma 2: if $\pi_{j}^{i} \geq \epsilon / k$ then $\tilde{\mathrm{v}}_{j}^{i} \leq \tilde{h}=k h / \epsilon$
Q: improve this with $h_{j}=(1+\epsilon)^{j}$?
A: geometric exploration

- explore bid $\mathrm{b}_{j}=(1+\epsilon)^{j}$ with prob. $\propto(1+$ epsilon) ${ }^{j}$
- $H=\sum_{j=0}^{k}(1+\epsilon)^{j} \approx h / \epsilon$
- $\tilde{h}_{j}=(1+\epsilon)^{j} H / \epsilon(1+\epsilon)^{j} \approx h / \epsilon^{2}$

Thm: MAB with geometric exploration $\mathbf{E}[\mathrm{MAB}] \geq$ $(1-3 \epsilon) \mathrm{OPT}-h / \epsilon^{3} \ln h / \epsilon^{2}$

Equilibrium of No-regret Learning

"outcomes of games under learning"
Recall: mixed Nash: players indepently randomize
Q: would learning in repeated game converge to independent randomization?

A: not generally.

Defn: coarse correlated equilibrium (CCE)

- mediator offers joint distributions of actions $\left(a_{R}, a_{C}\right)$
- players either
- follow mediator
- pick any fixed outcome
- CCE if best response is to follow mediator

Example: rock-paper-sissors

	Rock	Paper	Sissors
Rock	$\mathbf{- 6},-6$	$\mathbf{- 1 , 1}$	$\mathbf{1 , - 1}$
Paper	$\mathbf{1 , - 1}$	$\mathbf{- 6 , - 6}$	$\mathbf{- 1 , 1}$
Sissors	$\mathbf{- 1 , 1}$	$\mathbf{1 , - 1}$	$\mathbf{- 6 , - 6}$

Q: Nash?
A: uniform mixing
Q: other CCE?
A: uniform mixing over $\{(R, P),(R, S),(P, R),(P, S),(S, R),(S, P)\}$

- payoff from following mediator: 0
- payoff from any fixed action: $0 \times 2 / 3-6 \times 1 / 3=$ -2

Thm: play is no-regret iff distribution of play is CCE.

- suppose $\left(\left(a_{R}^{0}, a_{C}^{0}\right), \ldots,\left(a_{R}^{n}, a_{C}^{n}\right)\right)$ is no-regret
- no-regret for player R, for all a_{R}^{*} : $\sum_{i} R_{a_{R}^{i}, a_{C}^{i}} \geq \sum_{i} R_{a_{R}^{*}, a_{C}^{i}}$
- consider mediator:
- pick i uniformly from round $\{1, \ldots, n\}$
- recommend a_{R}^{i} to R and a_{C}^{i} to C.
- no-regret \Leftrightarrow CCE.

