Recall

- cumulative distribution function: $F_X(z) = \Pr[X < z]$
- uniform distribution on [0,1]: $F_X(z) = z$
- first-price auction: highest bidder wins, winner pays bid.

Exercise 10.1: Optimal Bid

Setup:

- you are bidding in a first-price auction
- other bidders with i.i.d. uniform bids on [0,1]

Questions: your value is v = 1/2

- What should you bid against one other bidder?
- What should you bid against two other bidders?

Lecture 10: Learning to Bid

Assigned Today: Project 3

Lecture 10: Learning to Bid

Assigned Today: Project 3

Last Time:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomlpete information analysis (Bayes-Nash equilbrium)

Lecture 10: Learning to Bid

Assigned Today: Project 3

Last Time:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomlpete information analysis (Bayes-Nash equilbrium)

Today:

- learning to bid
- full feedback
- partial feedback
- equilibrium of no-regret learning (coarse correlated equilibrium)