CS 396: Online Markets

Lecture 8: Equilibria in Auctions

Last Time:

- game theory
- bimatrix games
- Nash equilbrium
- dominant strategy equilibrium

Today:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomplete information analysis (Bayes-Nash equilbrium)

Exercise: Pretty Puzzle

Setup:

- you are playing a game against your *n* classmates.
- pick an integer between 0 and 100
- the students who pick the number closest to 1/2 the average wins.

Questions:

- play the game!
- Identify an action that is in a Nash equilibrium.

Auction Theory

"predict outcomes in auctions; which auctions are better"

Example:

- first-price auction (FPA)
 - highest bidder wins (random tie-breaking)
 winner pays bid
- second-price auction (SPA)
 - highest bidder wins (random tie-breaking)
 - winner pays-second highest bid
- which auction has higher welfare (value of winner)
- which auction has higher revenue? (payment to auctioneer)

Recall:

- second price auction
- "bid = value" is dominant strategy
- e.g, two bidders,
 - $-v_1 = 90, v_2 = 30$

$$-$$
 in DSE, $b_1 = 90, b_2 = 30$

- bidder 1 wins, pays 30.
- welfare is 90, revenue is 30.

Nash Equilibria of First-price Auction

"analyze as a complete information game"

Example:

- FPA, two bidder, action space: $\{0, \ldots, 100\}$
- values known
- e.g., $v_1 = 90, v_2 = 30$

Q: what are the Nash equilibria?

- **A:** (31, 30) and (30, 29)
- **Q:** is (30, 30) a Nash? **A:** No.

Thm: in Nash eq. of discrete FPA

- highest-valued agent wins
- winner pays second-highest value or secondhighest + minimum bid increment.

Conclusion: with full information FPA and SPA have approximately the same outcome.

Exercise: Winning Probabilities

Recall:

- cumulative distribution function: $F_X(z) = \mathbf{Pr}[X < z]$
- uniform distribution on [0, 1]: $F_X(z) = z$
- first-price auction: highest bidder wins, winner pays bid.
- independent and identical distributions (i.i.d.):

$$-X_1, \dots, X_n \sim F_X$$

$$-\mathbf{X}_{-i} = (X_1, \dots, X_{i-1}, ?, X_{i+1}, \dots, X_n)$$

$$-\mathbf{Pr}[X_i < \mathbf{z} \mid \mathbf{X}_{-i}] = \mathbf{Pr}[X_i < \mathbf{z}]$$

Setup:

- you are bidding in a first-price auction
- other bidders with i.i.d. uniform bids on [0, 1]

Questions: If you bid b = 1/2,

- What is the probability you win against one other bidder?
- What is the probability you win against two other bidders?

Incomplete Information

"bidders values are random from a known distribution"

Example: second-price auction

- two bidders, values U[0,1]
- analysis:
 - "bid = value" is dominant strategy - $\mathbf{E}[\mathbf{v}_{(1)}] = \frac{2}{3}, \mathbf{E}[\mathbf{v}_{(2)}] = \frac{1}{3}$
- expected welfare: 2/3.
- expected revenue: 1/3.
- .

Bayes-Nash Equilibrium

"how do bidders bid when no DSE"

Example:

- first-price auction
- two bidders, values U[0, 1]

Q: what is equilibrium?

A: (guess and verify)

- suppose bidder 2 bids half of value
- how should you bidder 1 bid?
- plan:
 - write winning probability as function of b
 - write utility as function of \boldsymbol{v} and \boldsymbol{b}
 - solve for optimal bid.
- winning probability:

$$\begin{aligned} \mathbf{Pr}[\text{win with bid } b] &= \mathbf{Pr}[b_2 < b] \\ &= \mathbf{Pr}[v_2/2 < b] \\ &= \mathbf{Pr}[v_2 < 2 b] \\ &= F(2 b) \\ &= 2 b \end{aligned}$$

• utility:

$$\begin{split} u(v,b) &= (v-b) \operatorname{\mathbf{Pr}}[\text{win with bid } b] \\ &= (v-b) \, 2 \, b \\ &= 2 \, v \, b - 2 \, b^2 \end{split}$$

• optimal bid:

$$- \frac{d}{d\mathbf{b}} \left[\mathbf{u}(\mathbf{v}, \mathbf{b}) \right] = 2 \,\mathbf{v} - 4 \,\mathbf{b} = 0$$
$$- \mathbf{b} = \mathbf{v}/2$$

- conclusion:
 - assumed bidder 2 bids half of value
 - showed that bidder 1 bids half of value
 - "bid half of value" is equilibrium.
- expected welfare: $\mathbf{E}[\mathbf{v}_{(1)}] = 2/3$
- expected revenue: $\mathbf{E}[\mathbf{b}_{(1)}] = \mathbf{E}[\mathbf{v}_{(1)}/2] = 1/3$

Def: bidders with **common prior** know distribution of values $\mathbf{v} \sim \mathbf{F}$

Notation: $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n)$

Def: strategy profile $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$ (σ_i maps value v_i to bid b_i) is **Bayes-Nash equilibrium (BNE)** if for all $i, \sigma_i(v_i)$ is best response when other agents play $\boldsymbol{\sigma}_{-i}(\mathbf{v}_{-i})$ with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$.

Claim: $\boldsymbol{\sigma} = (\sigma, \sigma)$ with $\sigma(\mathbf{v}) = \mathbf{v}/2$ is a BNE of 2-bidder FPA with values i.i.d. U[0, 1]