Exercise 9.1: Pretty Puzzle

Exercise 9.1: Pretty Puzzle

Setup:

- you are playing a game against your n classmates.
- pick an integer between 0 and 100
- the students who pick the number closest to $1 / 2$ the average wins.

Questions:

- Play the game!
- Identify an action that is in a Nash equilibrium. (Answer on Canvas)

Lecture 9: Auction Equilibria

Due soon: Project 2 peer reviews due tonight.

Lecture 9: Auction Equilibria

Due soon: Project 2 peer reviews due tonight.
Last Time:

- game theory
- bimatrix games
- Nash equilibria
- dominant strategy equilibria

Lecture 9: Auction Equilibria

Due soon: Project 2 peer reviews due tonight.
Last Time:

- game theory
- bimatrix games
- Nash equilibria
- dominant strategy equilibria

Today:

- auction theory
- second-price auction
- first-price auction
- complete information analysis (Nash equilibrium)
- incomlpete information analysis (Bayes-Nash equilbrium)

Exercise 9.2: Winning Probabilities

Recall

- cumulative distribution func. for $X \sim U[0,1]: F_{X}(\mathrm{z})=\operatorname{Pr}[X<\mathrm{z}]=\mathrm{z}$
- first-price auction: highest bidder wins, winner pays bid.
- indendent and identical distributions (i.i.d.):
- $X_{1}, \ldots, X_{n} \sim F_{X}$
- $\mathbf{X}_{-i}=\left(X_{1}, \ldots, X_{i-1}, ?, X_{i+1}, \ldots, X_{n}\right)$
- $\operatorname{Pr}\left[X_{i}<\mathrm{z} \mid \mathrm{X}_{-i}\right]=\operatorname{Pr}\left[X_{i}<\mathrm{z}\right]$

Exercise 9.2: Winning Probabilities

Setup:

- you are bidding in a first-price auction
- other bidders with i.i.d. uniform bids on $[0,1]$

Questions: If you bid $b=1 / 2$,

- What is the probability you win against one other bidder?
- What is the probability you win against two other bidders?

