CS 396: Online Markets

Lecture 8: Game Theory

Last Time:

- multi-armed bandit learning
- reduction to online learning

Today:

- game theory
- bimatrix games
- Nash equilbrium
- dominant strategy equilibrium

Exercise: Best Response

Setup:

- you observe weather forecast, probability q of rain.
- you choose bus or bike to school.
- nature realizes weather: rain w. prob. q, sunny w. prob. (1-q)
- payoffs:

	it rains	it's sunny
Bus	1	2
Bike	-2	6

Questions: What is your best action given:

- Forecast of q = 0 chance of rain?
- Forecast of q = 1/2 chance of rain?
- Forecast of q = 1 chance of rain?

Game Theory

"predict outcomes of strategic scenarios"

Def: bimatrix game

- row player with *n* actions
- column player with m actions

- payoff matrices $R, C \in \mathbb{R}^{n \times m}$.
- on row action *i*, column action *j*:
 row player payoff *R_{ij}*column player payoff *C_{ij}*
 - column player payon Ca

Example: Chicken

	Stay	Swerve
Stay	-5 ,-5	1 ,-1
Swerve	-1 ,1	-1 ,-1

Equilibria

"stable outcomes in a game"

Def: best response

- if column player plays j
- row player's best responce is $i^* = \operatorname{argmax}_i R_{ij}$

 $\mathbf{Q:}$ in Chicken

- What should R do if C stays? A: Swerve
- What should C do if R swerves? A: Stay

Conclusion: (Swerve, Stay) is a mutual best response

A.k.a., a pure Nash equilibrium

Symmetry: (Swerve,Stay) is also pure Nash equilibium.

Randomized Equilibria

"a.k.a., mixed"

 ${\bf Q}{:}$ are there other equilibria?

A: yes

- suppose C stays with probability q
- plot R's payoff:
 - for swerving: -5q + 1(1-q) = 1 6q
 - for staying: -1q + -1(1-q) = -1

[PICTURE]

• R is indifferent at q = 1/3.

Def: n dimensional probability simplex

 $\Delta_n = \{ \mathbf{p} \in [0, 1]^n : \sum_i p_i = 1 \}$

Def: A mixed Nash equilibrium is

- row player plays $\mathbf{p}^* \in \Delta_n$
- column player plays $\mathbf{q}^* \in \Delta_m$
- \mathbf{p}^* is best response: $\mathbf{p}^* \in \operatorname{argmax}_{\mathbf{p}} \mathbf{p}^T R \mathbf{q}^*$
- \mathbf{q}^* is best response: $\mathbf{q}^* \in \operatorname{argmax}_{\mathbf{q}} \mathbf{p}^{*T} C \mathbf{q}$

Fact: $\mathbf{p}^*, \mathbf{q}^*$) is Nash iff

- $\mathbf{p}_i^* > 0 \Rightarrow$ "action *i* is best response to \mathbf{q}^* "
- $\mathbf{q}_{i}^{*} > 0 \Rightarrow$ "action j is best response to \mathbf{p}^{*} "

Exercise: "Battle of the Sexes"

Setup:

- you are the row player.
- payoffs:

	Opera	Football
Opera	4, 2	0 , 0
Football	0 , 0	2, 4

Questions:

- Identify the pure Nash equilibria.
- Is there a mixed Nash; if so, what is your probability of selecting Opera in it?
- Let's play! (Imagine the column player is a random classmate.)

Existence of Equilibria

Example: Hide and Seek

	Seek at A	Seek at B
Hide at A	-1 ,1	1 ,-1
Hide at B	1 ,-1	-1 ,1

A.k.a. Matching Pennies

Q: pure Nash equilbrium? **A:** no!

Q: mixed Nash? A: yes!

- R mixes $(1/2, 1/2) \Rightarrow C$ is indifferent.
- C mixes $(1/2, 1/2) \Rightarrow R$ is indifferent.

Thm: [Nash '51] Every game with finite action space has a (possibly) mixed (Nash) equilibrium.

Dominant Strategy Equilibria

Example: Prisoner's Dilemma

	Defect	Cooperate
Defect	-2 ,-2	0,-3
Cooperate	-3 ,0	-1 ,-1

Q: in Prisoner's Dilemma

- What should R do if C Defects? A: Defect
- What should R do if C Cooperates? A: Defect

Conclusion:

- Defect is a dominant strategy in Prisoner's Dilemma
- (Defect, Defect) is a dominant strategy equilbrium

Def:

- a **dominant strategy** is one that is a best response to any action.
- a **dominant strategy equilbrium** is one where all players play dominant strategies.

Notes:

- DSE \subseteq pure Nash \subseteq (possibly mixed) Nash
- only (possibly mixed) Nash always guaranteed to exist.
- equilibria can be unique, e.g., Hide and Seek, Prisoner's Dilemma
- or not, e.g., Chicken

Challenge: predictions in games with multiple equilibria.