CS 396: Online Markets

Lecture 7: Multi-armed Bandit Learning

Last Time:

- online learning (cont)
- warmup: geometric random variables
- perturbed follow the leader (analysis)
- multi-armed bandit learning

Today:

- multi-armed bandit learning
- reduction to online learning

Exercise: Expected Payoff

Setup:

- online learning, $k=2$ actions
- probabilities algorithm selects each action in round i are:

$$
\boldsymbol{\pi}^{i}=\left(\pi_{1}^{i}, \pi_{2}^{i}\right)=(2 / 3,1 / 3)
$$

- payoffs of each action in round i are:

$$
\mathbf{v}^{i}=\left(v_{1}^{i}, v_{2}^{i}\right)=(3,9)
$$

Question: What is the expected payoff of the algorithm in round i ?

(Online) Multi-armed Bandit Learning

"online learning with partial information"

Model:

- k actions
- n rounds
- action j 's payoff in round $i: v_{j}^{i} \in[0, h]$
- in round i :
(a) choose an action j^{i}
(b) learn payoffs $v_{j^{i}}^{i}$.
(c) obtain payoff $v_{j^{i}}^{i}$.
- payoff $\mathrm{ALG}=\sum_{i=1}^{n} v_{j^{i}}^{i}$

Goal: profit close to best action in hindsight
Note: identical to online learning except only learn $v_{j^{i}}^{i}$ and $\operatorname{not}\left(v_{1}^{i}, \ldots, v_{k}^{i}\right)$.

Note: if don't play an action j, can't learn if j is good.

Challenge: tradeoff explore versus exploit.

Reducing MAB to Online Learning

Approach: reduce partial information to full information.
"solve multi-armed bandit problem with online learning algorithm"

Notation: Online Algorithm (OLA)

- in round i :
- probabilities of actions $\boldsymbol{\pi}^{i}=\left(\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right)$
- choose action $j^{i} \sim \boldsymbol{\pi}^{i}$.
- payoffs $\mathbf{v}^{i}=\left(v_{1}^{i}, \ldots, v_{k}^{i}\right)$
- expected payoff:

$$
\begin{aligned}
\mathbf{E}\left[v_{j^{i}}^{i}\right] & =\sum_{j} \mathbf{E}\left[v_{j^{i}}^{i} \mid j^{i}=j\right] \operatorname{Pr}\left[j^{i}=j\right] \\
& =\sum_{j} v_{j}^{i} \pi_{j}^{i} \\
& =\mathbf{v}^{i} \cdot \boldsymbol{\pi}^{i} \quad \text { (vector dot product) }
\end{aligned}
$$

Challenge 1: what report to the algorithm?

Idea 1: give algorithm unbiased estimator of payoffs. Thm: for payoffs in $[0, \tilde{h}]$, if OLA satisfies

- if alg uses probabilities $\boldsymbol{\pi}^{t}=\left(\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right)$
- and samples $j^{i} \sim \boldsymbol{\pi}^{t}$
- real payoffs are $\mathbf{v}^{i}=\left(v_{1}^{i}, \ldots, v_{k}^{i}\right)$
- learn only $v_{j^{i}}^{i}$
- report payoff $\tilde{\mathbf{v}}^{i}=\left(0, \ldots, \tilde{v}_{j^{i}}^{i} / \pi_{j i}^{i}, \ldots, 0\right)$

Lemma 1: reported payoffs are unbiased estimators of true payoffs

Proof:

$$
\begin{aligned}
\mathbf{E}\left[\tilde{v}_{j}^{i}\right]= & \mathbf{E}\left[\tilde{v}_{j}^{i} \mid j^{i}=j\right] \cdot \operatorname{Pr}\left[j^{i}=j\right] \\
& +\mathbf{E}\left[\tilde{v}_{j}^{i} \mid j^{i} \neq j\right] \cdot \operatorname{Pr}\left[j^{i} \neq j\right] \\
= & v_{j}^{i} / \pi_{j}^{i} \cdot \pi_{j}^{i}+0 \cdot\left(1-\pi_{j}^{i}\right) \\
= & v_{j}^{i} \\
\mathbf{E}\left[\tilde{\mathbf{v}}^{i}\right]= & \mathbf{v}^{i}
\end{aligned}
$$

Note:

- reported payoffs in $[0, \tilde{h}]$ for $\tilde{h}=\max _{i, j} v_{j}^{i} / \pi_{j}^{i}$.
- if π_{j}^{i} is small, then $\tilde{v}_{j}^{i}=v_{j}^{i} / \pi_{j}^{i}$ can be big!

Challenge 2: keep \tilde{h} small
Idea 2: pick random action with some minimal probability ϵ / k
Lemma 2: if $\pi_{j}^{i} \geq \epsilon / k$ then $\tilde{v}_{j}^{i} \leq \tilde{h}=k h / \epsilon$
Proof: $\tilde{v}_{j}^{i}=v_{j}^{i} / \pi_{j}^{i} \leq h / \epsilon / k=k h / \epsilon$
Note: explore-vs-exploit tradeoff with ϵ

Alg: MAB Reduction to OLA

In round i :

1. $\pi \leftarrow \mathrm{OLA}$
2. draw $j^{i} \sim \tilde{\boldsymbol{\pi}}$ with

$$
\tilde{\pi}_{j}^{i}=(1-\epsilon) \pi_{j}^{i}+\epsilon / k
$$

3. take action j^{i}
4. report $\tilde{\mathbf{v}}$ to OLA with

$$
\tilde{v}_{j}^{i}= \begin{cases}v_{j}^{i} / \pi_{j}^{i} & \text { if } j=j^{i} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbf{E}[\mathrm{OLA}] \geq(1-\epsilon) \mathrm{OPT}-\tilde{h} / \epsilon \ln k
$$

then for payoffs in $[0, h]$, MAB satisfies

$$
\mathbf{E}[\mathrm{MAB}] \geq(1-2 \epsilon) \mathrm{OPT}-h k / \epsilon^{2} \ln k
$$

Recall: Exponential Weights (EW) satisfies assumption of Thm.
Cor: for payoffs in $[0, h]$, MAB-EW satisfies vanishing per round regret.

Proof: similar to before.

Exercise: MAB-EW

Recall: the per-round regret of exponential weights is $2 h \sqrt{\ln k / n}$

- dependence on h is $O(h)$
- dependence on n is $O(\sqrt{1 / n})$
- dependence on k is $O(\sqrt{\log k})$

Setup:

- payoffs in $[0, h]$
- apply the multi-armed-bandit reduction to the exponential weights algorithm
- Theorem: $\mathbf{E}[\mathrm{MAB}] \geq(1-2 \epsilon) \mathrm{OPT}-h k / \epsilon^{2} \ln k$
- optimally tune the learning rate ϵ for n rounds

Question: analyze the per-round regret, what is dependence on

- maximum payoff h ?
- number of rounds n ?
- number of actions k ?

Analysis

"online learning works with unbiased estimators of payoffs"

Proof of Thm:

$" \mathbf{E}[\mathrm{MAB}] \geq(1-2 \epsilon) \mathrm{OPT}-h k / \epsilon^{2} \ln k "$
0 . let

- $R=\tilde{h} / \epsilon \ln k$
- $j^{*}=\operatorname{argmax}_{j} \sum_{i} v_{j}^{i}$

1. what does OLA guarantee?
for any $\tilde{\mathbf{v}}^{1}, \ldots, \tilde{\mathbf{v}}^{n}$:

$$
\begin{aligned}
& \mathrm{OLA}= \sum_{i} \boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i} \\
& \mathbf{E}_{\boldsymbol{\pi}, \tilde{\mathbf{v}}}[\mathrm{OLA}]= \geq(1-\epsilon) \sum_{i} \tilde{v}_{j^{*}}^{i}-R \\
& \mathbf{E}_{\boldsymbol{\pi}, \tilde{\mathbf{v}}}\left[\boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i}\right] \geq(1-\epsilon) \sum_{i} \mathbf{E}_{\tilde{\mathbf{v}}}\left[\tilde{v}_{j^{*}}^{i}\right]-R \\
& \sum_{i} \mathbf{E}_{\boldsymbol{\pi}}\left[\boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}\right]
\end{aligned}
$$

For left-hand side:

$$
\begin{aligned}
\mathbf{E}_{\boldsymbol{\pi}^{i}, \tilde{\mathbf{v}}^{i}}\left[\boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i}\right] & =\sum_{\boldsymbol{\pi}^{i}} \mathbf{E}_{\boldsymbol{\pi}^{i}, \tilde{\mathbf{v}}^{i}}\left[\boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i} \mid \boldsymbol{\pi}^{i}\right] \operatorname{Pr}\left[\boldsymbol{\pi}^{i}\right] \\
& =\sum_{\boldsymbol{\pi}^{i}}\left[\boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}\right] \operatorname{Pr}\left[\boldsymbol{\pi}^{i}\right] \\
& =\mathbf{E}_{\boldsymbol{\pi}^{i}}\left[\boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}\right]
\end{aligned}
$$

2. What is MAB performance?

$$
\begin{aligned}
\mathrm{MAB} & =\sum_{i} \tilde{\boldsymbol{\pi}}^{i} \cdot \mathbf{v}^{i} \\
& =(1-\epsilon) \sum_{i} \boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}+\frac{\epsilon}{k} \sum_{j} v_{j}^{i} \\
& \geq(1-\epsilon) \sum_{i} \boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}
\end{aligned}
$$

