CS 396: Online Markets

Lecture 7: Multi-armed Bandit Learning

Last Time:

- online learning (cont)
- warmup: geometric random variables
- perturbed follow the leader (analysis)
- multi-armed bandit learning

Today:

- multi-armed bandit learning
- reduction to online learning

Exercise: Expected Payoff

Setup:

- online learning, k = 2 actions
- probabilities algorithm selects each action in round *i* are:

 $\pi^{i} = (\pi_{1}^{i}, \pi_{2}^{i}) = (2/3, 1/3)$

• payoffs of each action in round i are:

$$\mathbf{v}^i = (v_1^i, v_2^i) = (3, 9)$$

Question: What is the expected payoff of the algorithm in round i?

(Online) Multi-armed Bandit Learning

"online learning with partial information"

Model:

- k actions
- *n* rounds
- action j's payoff in round i: $v_i^i \in [0, h]$
- in round i:
 - (a) choose an action j^i
 - (b) learn payoffs $v_{j^i}^i$.

Goal: profit close to best action in hindsight

Note: identical to online learning except only learn $v_{i^i}^i$ and not (v_1^i, \ldots, v_k^i) .

Note: if don't play an action j, can't learn if j is good.

Challenge: tradeoff explore versus exploit.

Reducing MAB to Online Learning

Approach: reduce partial information to full information.

"solve multi-armed bandit problem with online learning algorithm"

I	Ι		I		I	(1-eps)pi	Ι		Ι
Ι	I	pi	Ι		Ι	+ eps/k	Ι		Ι
I I		>	Ι		Ι	>	Ι	W	Ι
ΙC)		Ι	М	Ι		Ι	0	Ι
L	.	(0,	Ι	А	Ι		Ι	R	Ι
A		vj/pij,	Ι	В	Ι		Ι	L	Ι
Ι	Ι	,0)	Ι		Ι	vj	Ι	D	Ι
Ι	Ι	<	Ι		Ι	<	Ι		Ι
Ι	I		Ι		Ι		Ι		Ι

Notation: Online Algorithm (OLA)

- in round i:
- probabilities of actions $\boldsymbol{\pi}^i = (\pi_1^i, \dots, \pi_k^i)$
- choose action $j^i \sim \pi^i$.
- payoffs $\mathbf{v}^i = (v_1^i, \dots, v_k^i)$
- expected payoff:

$$\begin{split} \mathbf{E} \Big[v_{j^i}^i \Big] &= \sum_j \mathbf{E} \Big[v_{j^i}^i \, | \, j^i = j \Big] \, \mathbf{Pr} \big[j^i = j \big] \\ &= \sum_j v_j^i \pi_j^i \\ &= \mathbf{v}^i \cdot \boldsymbol{\pi}^i \quad (\text{vector dot product}) \end{split}$$

Challenge 1: what report to the algorithm?

Idea 1: give algorithm unbiased estimator of payoffs. **Thm:** for payoffs in $[0, \tilde{h}]$, if OLA satisfies

- if alg uses probabilities $\boldsymbol{\pi}^t = (\pi_1^i, \dots, \pi_k^i)$
- and samples $j^i \sim \pi^t$
- real payoffs are $\mathbf{v}^i = (v_1^i, \dots, v_k^i)$
- learn only $v_{j^i}^i$
- report payoff $\tilde{\mathbf{v}}^i = (0, \dots, \tilde{v}^i_{ji} / \pi^i_{ji}, \dots, 0)$

Lemma 1: reported payoffs are unbiased estimators of true payoffs

Proof:

$$\begin{split} \mathbf{E}\big[\tilde{v}_j^i\big] &= \mathbf{E}\big[\tilde{v}_j^i \,|\, j^i = j\big] \cdot \mathbf{Pr}\big[j^i = j\big] \\ &+ \mathbf{E}\big[\tilde{v}_j^i \,|\, j^i \neq j\big] \cdot \mathbf{Pr}\big[j^i \neq j\big] \\ &= v_j^i / \pi_j^i \cdot \pi_j^i + 0 \cdot (1 - \pi_j^i) \\ &= v_j^i \\ \mathbf{E}\big[\tilde{\mathbf{v}}^i\big] &= \mathbf{v}^i \end{split}$$

Note:

- reported payoffs in $[0, \tilde{h}]$ for $\tilde{h} = \max_{i,j} v_j^i / \pi_i^i$.
- if π_j^i is small, then $\tilde{v}_j^i = v_j^i / \pi_j^i$ can be big!

Challenge 2: keep \tilde{h} small

Idea 2: pick random action with some minimal probability ϵ/k

Lemma 2: if $\pi_j^i \ge \epsilon/k$ then $\tilde{v}_j^i \le \tilde{h} = kh/\epsilon$

Proof:
$$\tilde{v}_i^i = v_j^i / \pi_i^i \leq h / \epsilon = kh / \epsilon$$

Note: explore-vs-exploit tradeoff with ϵ

Alg: MAB Reduction to OLA

In round *i*:

- 1. $\pi \leftarrow \text{OLA}$
- 2. draw $j^i \sim \tilde{\pi}$ with

$$\tilde{\pi}_j^i = (1 - \epsilon) \, \pi_j^i + \epsilon/k$$

- 3. take action j^i
- 4. report $\tilde{\mathbf{v}}$ to OLA with

$$\tilde{v}_j^i = \begin{cases} v_j^i / \pi_j^i & \text{if } j = j^i \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{E}[\text{OLA}] \ge (1-\epsilon) \operatorname{OPT} -\tilde{h}/\epsilon \ln k$$

then for payoffs in [0, h], MAB satisfies

$$\mathbf{E}[\mathrm{MAB}] \ge (1 - 2\epsilon) \operatorname{OPT} - \frac{h k}{\epsilon^2} \ln k$$

Recall: Exponential Weights (EW) satisfies assumption of Thm.

Cor: for payoffs in [0, h], MAB-EW satisfies vanishing per round regret.

Proof: similar to before.

Exercise: MAB-EW

Recall: the per-round regret of exponential weights is $2h\sqrt{\ln k/n}$

- dependence on h is O(h)
- dependence on n is $O(\sqrt{1/n})$
- dependence on k is $O(\sqrt{\log k})$

Setup:

- payoffs in [0, h]
- apply the multi-armed-bandit reduction to the exponential weights algorithm
- Theorem: $\mathbf{E}[MAB] \ge (1 2\epsilon) \operatorname{OPT} \frac{h k}{\epsilon^2} \ln k$
- optimally tune the learning rate ϵ for n rounds

Question: analyze the per-round regret, what is dependence on

- maximum payoff h?
- number of rounds n?
- number of actions k?

Analysis

"online learning works with unbiased estimators of payoffs"

Proof of Thm:

$$\mathbf{E}[\mathrm{MAB}] \ge (1 - 2\epsilon) \operatorname{OPT} - \frac{h k}{\epsilon^2} \ln k^{"}$$

0. let

•
$$R = \tilde{h}/\epsilon \ln k$$

•
$$j^* = \operatorname{argmax}_j \sum_i v_j^i$$

1. what does OLA guarantee?

for any $\tilde{\mathbf{v}}^1, \dots, \tilde{\mathbf{v}}^n$:

$$OLA = \sum_{i} \boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i} \geq (1 - \epsilon) \sum_{i} \tilde{v}^{i}_{j^{*}} - R$$
$$\mathbf{E}_{\boldsymbol{\pi}, \tilde{\mathbf{v}}}[OLA] = \sum_{i} \mathbf{E}_{\boldsymbol{\pi}, \tilde{\mathbf{v}}} [\boldsymbol{\pi}^{i} \cdot \tilde{\mathbf{v}}^{i}] \geq (1 - \epsilon) \sum_{i} \mathbf{E}_{\tilde{\mathbf{v}}} [\tilde{v}^{i}_{j^{*}}] - R$$
$$\prod_{i} \sum_{i} \mathbf{E}_{\boldsymbol{\pi}} [\boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i}] \geq (1 - \epsilon) \sum_{i} v^{i}_{j^{*}} - R$$

For left-hand side:

$$egin{aligned} \mathbf{E}_{oldsymbol{\pi}^i, ilde{\mathbf{v}}^i}ig[oldsymbol{\pi}^i \cdot ilde{\mathbf{v}}^iig] &= \sum_{oldsymbol{\pi}^i} \mathbf{E}_{oldsymbol{\pi}^i, ilde{\mathbf{v}}^i}ig[oldsymbol{\pi}^i \cdot ilde{\mathbf{v}}^iig] \,\mathbf{Pr}ig[oldsymbol{\pi}^iig] \ &= \sum_{oldsymbol{\pi}^i}ig[oldsymbol{\pi}^i \cdot ilde{\mathbf{v}}^iig] \,\mathbf{Pr}ig[oldsymbol{\pi}^iig] \ &= \mathbf{E}_{oldsymbol{\pi}^i}ig[oldsymbol{\pi}^i \cdot ilde{\mathbf{v}}^iig] \end{aligned}$$

2. What is MAB performance?

$$\begin{aligned} \mathbf{MAB} &= \sum_{i} \tilde{\boldsymbol{\pi}}^{i} \cdot \mathbf{v}^{i} \\ &= (1 - \epsilon) \sum_{i} \boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i} + \frac{\epsilon}{k} \sum_{j} v_{j}^{i} \\ &\geq (1 - \epsilon) \sum_{i} \boldsymbol{\pi}^{i} \cdot \mathbf{v}^{i} \end{aligned}$$

3. Combine (1) and (2), plug in R, Lemma~2:

$$\begin{split} \mathbf{E}[\text{MAB}] &\geq (1 - 2\epsilon) \text{ OPT } - R \\ &= (1 - 2\epsilon) \text{ OPT } - \tilde{h} / \epsilon \ln k \\ &= (1 - 2\epsilon) \text{ OPT } - \frac{h k}{\epsilon^2} \ln k \end{split}$$