Exercise 6.1: Exponential Random Variables

Probability Review

- exponential random variable X with rate λ .
- cumulative distirbution function $F_X(z) = \mathbf{P}r[X < z] = 1 e^{-\lambda z}$.
- density function $f_X(z) = \frac{d}{dz} F_X(z) = \lambda e^{-\lambda z}$.
- expectation $\mathbf{E}[X] = \int_0^\infty z \, f_X(z) \, dz = 1/\lambda$.
- conditional expectation $\mathbf{E}[X \mid X > z] = \frac{1}{1 F_X(z)} \int_z^\infty z \, f_X(z) \, dz$.

Exercise 6.1: Exponential Random Variables

Setup:

• X is exponential distribution with rate $\lambda = 1$.

Question: Evaluate

- its expectation $\mathbf{E}[X]$?
- its conditional expectation $\mathbf{E}[X \mid X > 1]$?
- its conditional expectation $\mathbf{E}[X \mid X > 100]$?

(Answer on Canvas)

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warm up: be the leader
- follow the perturbed leader

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warm up: be the leader
- follow the perturbed leader

Today:

- online learning (cont)
- warmup: geometric random variables
- follow the perturbed leader (analysis)

Exercise 6.2: FTPL

Exercise 6.2: FTPL

Setup:

- a follow the perturbed leader algorithm (FTPL, $\epsilon=1/2,\ h=1$)
 - **1** let $V_i^i = \sum_{r=1}^i v_i^r$
 - 2 hallucinate: $v_i^0 \sim$ "geometric with rate 1/2"
 - 3 in round i choose $j^i = \operatorname{argmax}_i v_i^0 + V_i^{i-1}$
- input:

	1	2	3
Action 1	1/2	0	0
Action 2	0	1	1

Question: On this input, what is FTPL probability of action 1

- o in round 1?
- 2 in round 2?

(Answer on Canvas)

(Hint for round 2: let p be "probability of choosing action i when i is ahead by 1/2"; write recurrence for p; and solve.)