Exercise 6.1: Exponential Random Variables

Probability Review

- exponential random variable X with rate λ.
- cumulative distirbution function $F_{X}(z)=\operatorname{Pr}[X<z]=1-e^{-\lambda z}$.
- density function $f_{X}(z)=\frac{d}{d z} F_{X}(z)=\lambda e^{-\lambda z}$.
- expectation $\mathbf{E}[X]=\int_{0}^{\infty} z f_{X}(z) d z=1 / \lambda$.
- conditional expectation $\mathbf{E}[X \mid X>z]=\frac{1}{1-F_{X}(z)} \int_{z}^{\infty} z f_{X}(z) d z$.

Exercise 6.1: Exponential Random Variables

Setup:

- X is exponential distribution with rate $\lambda=1$.

Question: Evaluate

- its expectation $\mathbf{E}[X]$?
- its conditional expectation $\mathrm{E}[X \mid X>1]$?
- its conditional expectation $\mathbf{E}[X \mid X>100]$?

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warm up: be the leader
- follow the perturbed leader

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warm up: be the leader
- follow the perturbed leader

Today:

- online learning (cont)
- warmup: geometric random variables
- follow the perturbed leader (analysis)

Exercise 6.2: FTPL

Exercise 6.2: FTPL

Setup:

- a follow the perturbed leader algorithm (FTPL, $\epsilon=1 / 2, h=1$)
(1) let $V_{j}^{i}=\sum_{r=1}^{i} v_{j}^{r}$
(2) hallucinate: $v_{j}^{0} \sim$ "geometric with rate $1 / 2^{\prime \prime}$
(3) in round i choose $j^{i}=\operatorname{argmax}_{j} v_{j}^{0}+V_{j}^{i-1}$
- input:

	1	2	3
Action 1	$1 / 2$	0	0
Action 2	0	1	1

Question: On this input, what is FTPL probability of action 1
(1) in round 1?
(2) in round 2?
(Hint for round 2: let p be "probability of choosing action i when i is ahead by $1 / 2^{\prime \prime}$; write recurrence for p; and solve.)

