CS 396: Online Markets

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warmup up: be the leader
- perturbed follow the leader

Today:

- online learning (cont)
- warmup: geometric random variables
- perturbed follow the leader (analysis)
- multi-armed bandit learning

Exercise: Exponential Random Variables

Setup:

- X is exponentially distributed with rate $\lambda=1$

Question: Evaluate

- its expectation $\mathbf{E}[X]$?
- its conditional expectation $\mathbf{E}[X \mid X>1]$?
- its conditional expectation $\mathbf{E}[X \mid X>100]$?

Geometric Distribution

"number of successful trials before success"
Model:

- coin with bias p (of heads)
(a.k.a., "probability of success")
- flip coin until heads
(a.k.a., "until success")
- geometric random variable $X=$ "number of tails" (a.k.a., "number of failures")

Properties:

- possible values: $\{0,1, \ldots$,
- probability mass function:

$$
\mathbf{P} r[X=\ell]=(1-p)^{\ell} p
$$

- expectation: $\mathbf{E}[X]=1-p / p$

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{\ell=0}^{\infty} \ell(1-p)^{\ell} p \\
& =(1-p) p \sum_{\ell=0}^{\infty} \ell(1-p)^{\ell-1} \\
& =(1-p) p \sum_{\ell=0}^{\infty}\left[-\frac{d}{d p}(1-p)^{\ell}\right] \\
& =(1-p) p \frac{d}{d p}\left[-\sum_{\ell=0}^{\infty}(1-p)^{\ell}\right] \\
& =(1-p) p \frac{d}{d p}(-1 / p) \\
& =(1-p) p\left(1 / p^{2}\right) \\
& =1-p / p
\end{aligned}
$$

- memoryless: $\mathbf{E}[X \mid X \geq \ell]=\ell+\mathbf{E}[X]$

Lemma 0: expected maximum of k geometric random variables is
$\mathbf{E}\left[\max _{i} X_{i}\right]=O\left(\frac{1}{p} \log k\right)$

Proof sketch:

- flip coins in rounds.
- discard failures
- stop when all coins are discarded
- how many rounds?

Example: $p=1 / 2, k=k^{0}=124$

- first round: about half discarded $\Rightarrow k^{1} \approx 64$
- second round: about half discarded $\Rightarrow k^{2} \approx 32$
- third round: about half discarded $\Rightarrow k^{3} \approx 16$
- $\left(\log _{2} k\right)$ th round: about none remaining.

Exercise: FTPL

Setup:

- FTPL (with $h=1$ and $\epsilon=1 / 2$)
- let $V_{j}^{i}=\sum_{r=1}^{i} v_{j}^{r}$
- hallucinate: $v_{j}^{0} \sim$ "geometric with rate $1 / 2$ ",
- in round i choose $j^{i}=\operatorname{argmax}_{j} v_{j}^{0}+V_{j}^{i-1}$
- Input:

	1	2	3
Action 1	$1 / 2$	0	0
Action 2	0	1	1

Question: On this input, what is probability of action 1:

- in round 1 ?
- in round 2 ?
(Hint for round 2: let p be "probability of choosing action i when i is ahead by $1 / 2^{\prime}$ '; write recurrence for p; and solve.)

Analysis of FTPL

Alg: FTPL

- hallucinate: $v_{j}^{0}=h \times$ "geometric with rate ϵ "
- let $V_{j}^{i}=\sum_{r=1}^{i} v_{j}^{i}$
- in round i choose: $j^{i}=\operatorname{argmax}_{j} v_{j}^{0}+V_{j}^{i-1}$

Thm: for payoffs in $[0, h]$,

$$
\mathbf{E}[\mathrm{FTPL}] \geq(1-\epsilon) \mathrm{OPT}-\frac{h}{\epsilon} \ln k
$$

Lemma 1: (Stabilty) FTPL $\geq(1-\epsilon)$ BTPL
Lemma 2: (Small Perturbation)
$\mathrm{BTPL} \geq \mathrm{OPT}-O\left(\frac{h}{\epsilon} \log k\right)$
Proof of Lemma 2: (intuition)

- maximum hallucination:
$\operatorname{MAXPTRB}=\mathbf{E}\left[\max _{j} v_{j}^{0}\right]$
- $\widetilde{\mathrm{BTPL}}=$ BTPL payoff with perturbation
- $\widetilde{\mathrm{OPT}}=$ OPT payoff with perturbation

$$
\begin{aligned}
\mathbf{E}[\mathrm{BTPL}]+\mathbf{E}[\mathrm{MAXPTRB}] & =\widetilde{\mathrm{BTPL}} \\
& \geq \widetilde{\mathrm{OPT}} \\
& \geq \mathrm{OPT}
\end{aligned}
$$

- $\mathbf{E}[\mathrm{BTPL}] \geq \mathrm{OPT}-\mathbf{E}[\mathrm{MAXPTRB}]$
$\geq \mathrm{OPT}-O\left(\frac{h}{\epsilon} \log k\right)$

Proof of Lemma 1:

- coupling argument
- start with raw scores
- add perturbation as:
- pick action with lowest total score
- flip coin:
* heads: discard
* tails: add h to score.
- repeat until one action j^{*} left
- flip j^{*} s coin:
- tails: (w.p. $1-\epsilon$)
* best action score $>\mathrm{h}+$ second-best score
* FTPL and BTPL pick j^{*}
- heads:
* doesn't matter.
- conclusion:

FTPL picks same action as BTPL with probability at least $1-\epsilon$

- $\mathbf{E}[$ FTPL $] \geq(1-\epsilon) \mathbf{E}[$ BTPL $]$

