CS 396: Online Markets

Lecture 6: Online Learning (Cont)

Last Time:

- online learning (cont)
- warmup up: be the leader
- perturbed follow the leader

Today:

- online learning (cont)
- warmup: geometric random variables
- perturbed follow the leader (analysis)
- multi-armed bandit learning

Exercise: Exponential Random Variables

Setup:

• X is exponentially distributed with rate $\lambda = 1$

Question: Evaluate

- its expectation $\mathbf{E}[X]$?
- its conditional expectation $\mathbf{E}[X | X > 1]$?
- its conditional expectation $\mathbf{E}[X | X > 100]$?

Geometric Distribution

"number of successful trials before success"

Model:

• coin with bias p (of heads)

(a.k.a., "probability of success")

• flip coin until heads

```
(a.k.a., "until success")
```

- geometric random variable X = "number of tails"
 - (a.k.a., "number of failures")

Properties:

- possible values: $\{0, 1, \ldots, \}$
- probability mass function:

$$\mathbf{P}r[X=\ell] = (1-p)^{\ell}p$$

• expectation: $\mathbf{E}[X] = \frac{1-p}{p}$

$$\begin{split} \mathbf{E}[X] &= \sum_{\ell=0}^{\infty} \ell (1-p)^{\ell} p \\ &= (1-p) p \sum_{\ell=0}^{\infty} \ell (1-p)^{\ell-1} \\ &= (1-p) p \sum_{\ell=0}^{\infty} \left[-\frac{d}{dp} (1-p)^{\ell} \right] \\ &= (1-p) p \frac{d}{dp} \left[-\sum_{\ell=0}^{\infty} (1-p)^{\ell} \right] \\ &= (1-p) p \frac{d}{dp} (-1/p) \\ &= (1-p) p (1/p^2) \\ &= 1-p/p \end{split}$$

• memoryless: $\mathbf{E}[X|X \ge \ell] = \ell + \mathbf{E}[X]$

Lemma 0: expected maximum of k geometric random variables is

$$\mathbf{E}[\max_i X_i] = O(\frac{1}{n}\log k)$$

Proof sketch:

- flip coins in rounds.
- discard failures
- stop when all coins are discarded
- how many rounds?

Example: $p = 1/2, k = k^0 = 124$

- first round: about half discarded $\Rightarrow k^1 \approx 64$
- second round: about half discarded $\Rightarrow k^2 \approx 32$
- third round: about half discarded $\Rightarrow k^3 \approx 16$

...

• $(\log_2 k)$ th round: about none remaining.

Exercise: FTPL

Setup:

- FTPL (with h = 1 and $\epsilon = 1/2$) - let $V_j^i = \sum_{r=1}^i v_j^r$ - hallucinate: $v_j^0 \sim$ "geometric with rate 1/2" - in round *i* choose $j^i = \operatorname{argmax}_j v_j^0 + V_j^{i-1}$
- Input:

	1	2	3
Action 1	1/2	0	0
Action 2	0	1	1

Question: On this input, what is probability of action 1:

- in round 1?
- in round 2?

(Hint for round 2: let p be "probability of choosing action i when i is ahead by 1/2'; write recurrence for p; and solve.)

Analysis of FTPL

Alg: FTPL

- hallucinate: $v_i^0 = h \times$ "geometric with rate ϵ "
- let $V_j^i = \sum_{r=1}^i v_j^i$
- in round *i* choose: $j^i = \operatorname{argmax}_i v_i^0 + V_i^{i-1}$

Thm: for payoffs in [0, h],

$$\mathbf{E}[\text{FTPL}] \ge (1 - \epsilon) \operatorname{OPT} - \frac{h}{\epsilon} \ln k.$$

Lemma 1: (Stabilty) FTPL $\geq (1 - \epsilon)$ BTPL

Lemma 2: (Small Perturbation)

 $BTPL \ge OPT - O(\frac{h}{\epsilon} \log k)$

Proof of Lemma 2: (intuition)

• maximum hallucination: $MAXPTRB = \mathbf{E}[\max_j v_j^0]$

- $\widetilde{\text{BTPL}} = \text{BTPL}$ payoff with perturbation
- $\widetilde{OPT} = OPT$ payoff with perturbation

 $\mathbf{E}[BTPL] + \mathbf{E}[MAXPTRB] = \widetilde{BTPL}$

- $> \widetilde{OPT}$ $\geq OPT$
- $\mathbf{E}[BTPL] \ge OPT \mathbf{E}[MAXPTRB]$ $\geq \text{OPT} - O(\frac{h}{\epsilon} \log k)$

Proof of Lemma 1:

- coupling argument
- start with raw scores
- add perturbation as:
 - pick action with lowest total score
 - flip coin:
 - * heads: discard
 - * tails: add h to score.
 - repeat until one action j^* left
- flip j^* 's coin:
 - tails: (w.p. 1ϵ) * best action score > h + second-bestscore
 - * FTPL and BTPL pick j^*
 - heads:
 - * doesn't matter.
- conclusion:

FTPL picks same action as BTPL with probability at least $1-\epsilon$

• $\mathbf{E}[\text{FTPL}] \ge (1 - \epsilon)\mathbf{E}[\text{BTPL}]$