CS 396: Online Markets

Lecture Online Learning 5: (Cont)

Last Time:

- online learning
- follow the leader
- exponential weights

Today:

- online learning (cont)
- warmup up: be the leader
- perturbed follow the leader

Exercise: Be the Leader

Setup:

- Alg: be the leader - let $V_j^i = \sum_{r=1}^i v_j^i$ - in round *i* choose: $j^i = \operatorname{argmax}_j V_j^i$
- Input:

	1	2	3	4	5
Action 1	1/2	0	1	0	1
Action 2	0	1	0	1	0

Question:

- what is OPT (in hindsight) payoff?
- what is payoff of BTL on this input?
- in general, which is bigger OPT or BTL?

Online Learning

"make decisions over time, learn to do well"

Model:

- k actions
- *n* rounds
- action j's payoff in round i: $v_i^i \in [0, h]$
- in round *i*:

(a) choose an action j^i (b) learn payoffs v_1^i, \ldots, v_k^i (c) obtain payoff $v_{j^i}^i$. • payoff ALG = $\sum_{i=1}^{n} v_{i}^{i}$

Goal: profit close to best action in hindsight

Def: the **best in hindsight** payoff is

$$\text{OPT} = \max_{j} \sum_{i=1}^{n} v_{j}^{i}$$

Def: the regret of the algorithm is

 $\operatorname{Regret}_n = 1/n[\operatorname{OPT} - \operatorname{ALG}]$

Be the Leader

Alg 0: Be the Leader (BTL)

- $\label{eq:view} \begin{array}{l} \bullet \ \, \operatorname{let}\, V^i_j = \sum_{r=1}^i v^i_j \\ \bullet \ \, \operatorname{in \ round}\, i \ \, \operatorname{choose:}\, > j^i = \operatorname{argmax}_j V^i_j \end{array}$

Example: k = 2 actions

	1	2	3	4
Action 1	.4	.3	0	1
Action 2	.2	.1	1	0
BTL	.4	.7	1.7	2.7
OPT	.4	.7	1.3	1.7

PICTURE

Thm: $BTL \ge OPT$

Proof:

- let OPT_i = best-in-hindsight after *i* rounds.
- let $opt_i = OPT_i OPT_{i-1}$ (change in OPT_i)
- claim: $btl_i \ge opt_i$
 - $\operatorname{opt}_i = \operatorname{change} \operatorname{in} \operatorname{leaders'} \operatorname{payoffs} \operatorname{over} \operatorname{round}$ i
 - btl_i = full payoff received by that leader in round i

$$\Rightarrow BTL \ge OPT.$$

Follow the Perturbed Leader

Alg 2: Follow the Perturbed Leader (FTPL)

- learning rate ϵ
- hallucinate: $v_j^0 = h \times$ "num tails of ϵ -bias coin flipped in a row"
- let $V_j^i = \sum_{r=1}^i v_j^i$
- in round *i* choose: $j^i = \operatorname{argmax}_j v_j^0 + V_j^{i-1}$

Example: k = 2 actions

	0	1	2	3	4	5	6	
Action 1	2	1/2	0	1	0	1	0	
Action 2	3	0	1	0	1	0	1	

- OPT $\approx n/2$
- FTPL $\approx n/2$
- "no regret"

Thm: for payoffs in [0, h],

$$\mathbf{E}[\text{FTPL}] \ge (1 - \epsilon) \operatorname{OPT} - \frac{h}{\epsilon} \ln k.$$

Cor: in *n* rounds and payoffs in [0, h], tune learning rate ϵ so

$$\mathbf{E}[\text{Regret}(\text{FTPL})] \le 2h\sqrt{\frac{\ln k}{n}}$$

Proof: same as for EW.

Exercise: Learning Rate

Setup:

- n = 200 rounds.
- k = 10 actions.
- follow-the-perturbed-leader (FTPL) algorithm
- learning rate $\epsilon = 0.1$

Question: You find out you are going to run for for 400 days? Should you increase or decrease your learning rate?

Q: Why does FTPL work?

A:

- 1. stability: FTPL \approx BTPL
- 2. small perturbation: $BTPL \gtrsim OPT$

Lemma 1: (Stabity) $\text{FTPL} \ge (1 - \epsilon) \text{BTPL}$

Lemma 2: (Small Perturbation) BTPL \geq OPT $-O(\frac{h}{\epsilon} \log k)$

Proof of Thm:

• combine: FTPL $\geq (1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log k)$

Proof of Lemma 2: (intuition)

- BTPL \geq BTL $-\mathbf{E}[\max_j v_i^0]$
- $\mathbf{E}[\max_j v_j^i] = O(\frac{h}{\epsilon} \ln k)$
 - flip coins in rounds.
 - about (1ϵ) fraction of actions remaining in each round
 - no actions remain after $\log_{1/(1-\epsilon)} k \approx \frac{1}{\epsilon} \log k$ rounds
- formal proof:
 - compare max of geometric r.v.s to max of exponential r.v.s
 - calculus

Proof of Lemma 1:

- coupling argument
- start with raw scores
- add perturbation as:
 - pick action with lowest total score
 - flip coin:
 - * heads: discard
 - * tails: add h to score.
 - repeat until one action j^{\ast} left
- flip j^* 's coin:
 - tails: (w.p. 1ϵ)
 - * best action score > h + second-best score
 - * FTPL and FTPL pick j^*
 - heads:

* FTPL
$$\geq 0$$