## CS 396: Online Markets

## Lecture 3: Online Approximation

## Last Time:

- course philosophy
- second price auction (cont)
- online allocation: backwards induction
- online mechanisms: sequential pricing

Today:

- online allocation (cont)
- approximation
- prophet inequality
- secretary problem


## Exercise: Approximation Ratio

## Setup:

- $\mathrm{n}=2$ buyers
- values $U[0,1]$

Question: What is the ratio of the expected welfares of the optimal "offline" algorithm to the online backwards induction algorithm?

## Recall: Online Allocation

"buyers show up one at a time, must make decision for each buyer before next buyer arrives"
A.k.a. "Online Gambling"

Assumption 1: values are drawn from known probability distributions

Recall Alg: backward induction

1. expected payoff from no prize is $P_{n+1}$
2. Iterate from $i=n$ to 1
a. threshold for prize $i$ is $\hat{v}_{i}=P_{i+1}$
b. expeted payoff from games $\{i, \ldots, n\}$ $P_{i}=\mathbf{E}\left[\max \left(v_{i}, P_{i+1}\right)\right]$
3. output thresholds $\hat{\mathbf{v}}=\left(\hat{v}_{1}, \ldots, \hat{v}_{n}\right)$

Example: $n=2$ buyers, values $U[0,8]$

- thresholds: $\hat{\mathbf{v}}=(4,0)$
- welfare: $5 / 8$

$$
\begin{aligned}
- & \mathbf{E}\left[v_{1} \mid v_{1}>\hat{v}_{1}\right] \mathbf{P} r\left[v_{1}>\hat{v}_{1}\right] \\
& +\mathbf{E}\left[v_{2} \mid v_{1}<\hat{v}_{1}\right] \mathbf{P} r\left[v_{1}<\hat{v}_{1}\right] \\
- & \mathbf{P} r\left[v_{1}>\hat{v}_{1}\right]=\mathbf{P} r\left[v_{1}<\hat{v}_{1}\right]=1 / 2 \\
- & \mathbf{E}\left[v_{1} \mid v_{1}>\hat{v}_{1}\right]=6 \\
- & \mathbf{E}\left[v 2 \mid v_{1}<\hat{v}_{1}\right]=\mathbf{E}\left[v_{2}\right]=4 . \\
- & \Rightarrow 6(1 / 2)+4(1 / 2)=5
\end{aligned}
$$

## Comparing online algorithm to optimal offline algorithm

Defn: an online algorithm ALG is a $\beta$-approximation to the optimal offline algorithm OPT if

$$
\mathbf{E}[\operatorname{ALG}(\mathbf{v})] \geq \frac{1}{\beta} \mathbf{E}[\mathrm{OPT}(\mathbf{v})]
$$

A.k.a. "competitive analysis"

Note: $\beta \geq 1$ and smaller is better.

## The eBay Problem

"posting a uniform price"
Thm: gambler can used single threshold $\hat{v}$ and obtain expected payoff at least half of expected optimal offline payoff, i.e., 2-approximation.
A.k.a. prophet inequality
"optimal offline payoff" is prophet's payoff (who can see future)"

## Proof:

0. Notation

- $\hat{v}=$ threshold
- $(\cdot)^{+}=\max (\cdot, 0)$
- $\chi=\prod_{i} \mathbf{P} r\left[v_{i}<\hat{v}\right]=\mathbf{P} r[$ no prize $]$
- event $\mathcal{E}_{i}=" \forall j \neq i, v_{j}<\hat{v} "$

1. upperbound on prophet
$\mathbf{E}[\mathrm{OPT}(\mathbf{v})]$

$$
\begin{aligned}
& =\mathbf{E}\left[\max _{i} v_{i}\right] \\
& =\hat{v}+\mathbf{E}\left[\max _{i}\left(v_{i}-\hat{v}\right)\right] \\
& \leq \hat{v}+\mathbf{E}\left[\max _{i}\left(v_{i}-\hat{v}\right)^{+}\right] \\
& \leq \hat{v}+\mathbf{E}\left[\sum_{i}\left(v_{i}-\hat{v}\right)^{+}\right] \\
& =\hat{v}+\sum_{i} \mathbf{E}\left[\left(v_{i}-\hat{v}\right)^{+}\right]
\end{aligned}
$$

2. lowerbound on gambler

$$
\begin{aligned}
& \mathbf{E}[\operatorname{ALG}(\mathbf{v})] \\
& =(1-\chi) \hat{v}+\mathbf{E}[\text { amount selected prize exceeds } \hat{v}] \\
& \geq(1-\chi) \hat{v}+\sum_{i} \mathbf{E}\left[\left(v_{i}-\hat{v}\right)^{+} \mid \mathcal{E}_{i}\right] \mathbf{P} r\left[\mathcal{E}_{i}\right] \\
& \geq(1-\chi) \hat{v}+\chi \sum_{i} \mathbf{E}\left[\left(v_{i}-\hat{v}\right)^{+}\right]
\end{aligned}
$$

3. choose $\chi=1 / 2$ and combine.

$$
\mathbf{E}[\operatorname{ALG}(\mathbf{v})] \geq \frac{1}{2} \mathbf{E}[\mathrm{OPT}(\mathbf{v})]
$$

## The Secretary Problem

"online allocation with 'buyers' in uniform random order"

Assumption 2: values are in a uniformly random order.

Example: $n=3$
Two algs for example:
(a) give item to buyer $i$ for some $i$

$$
\Rightarrow \operatorname{Pr}[\text { success }]=1 / 3
$$

(b) look at 1st, condition choice of 2 nd or 3 rd.

- if 2 nd greater than 1 st, give to 2 nd
- else, give to 3rd.

$$
\Rightarrow \mathbf{P r}[\text { success }]=1 / 2
$$

| sequence | 123 | 132 | 213 | 231 | 312 | 321 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| alg (a) <br> $\operatorname{alg}(\mathrm{b})$ |  | $\sqrt{ }$ |

## Algorithm: Secretary Alg

1. solicit bids from $k$ buyers, but do not sell.
2. give item to first remaining buyer with value greater than any of first $k$.

Lemma: For $k=n / 2$ alg is selects highest value w.p. $1 / 4$.

## Proof:

- select highest when 2 nd best in first half and 1 st best in second half.
- Recall "conditional probability": $\operatorname{Pr}[A \& B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$.
- $\operatorname{Pr}[2$ nd best in first half $]=1 / 2$
- $\operatorname{Pr}[1$ st best in second half $\mid 2$ nd best in first half] $=\frac{n / 2}{n-1} \geq 1 / 2$
$\Rightarrow \operatorname{Pr}[$ select highest $]$

