Exercise 1.3: Uniform Expectation

Probability Review

- The cumulative distribution function (cdf) of random variable X is $F_{X}(z)=\operatorname{Pr}[X<z]$.
- The probability density function (pdf) of X is $f_{X}(z)=\frac{d}{d z} F_{X}(z)$.
- The expected value of a random variable is $\mathbf{E}[X]=\int_{-\infty}^{\infty} z f_{X}(z) d z$.
- The uniform random variable $X \sim U[0, h]$ has $\operatorname{cdf} F_{X}(z)=z / h$ and pdf $f_{X}(z)=1 / h$.

Exercise 1.3: Uniform Expectation

Calculate the expected value $\mathbf{E}[X]$ of uniform random variable $X \sim U[0,1]$ (Answer on Canvas)

Teaching Assistants

Yiding Feng

Yingkai Li

Course Philosophy

- online markets combines:
- online algorithm design
- mechanism design
- lectures:
- algorithms/mechanisms and proofs.
- goal: learn why markets work
- projects:
- hands on experience.
- goal: learn how theory applies.

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Course Syllabus

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
- Lecture exercises (turn in on Canvas as "quizzes")
- Projects, Project Reports (work in pairs)
- Peer review (individually, on canvas)
- Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Lecture 2: Online Allocation

Last Time:

- example: ride sharing
- paradigms: algorithm design, online algorithms, mechanism design
- first-price auction, ascending auction, second-price auction

Lecture 2: Online Allocation

Last Time:

- example: ride sharing
- paradigms: algorithm design, online algorithms, mechanism design
- first-price auction, ascending auction, second-price auction

Today:

- second-price auction (cont)
- online allocation
- prophet inequality
- sequential pricing

Exercise 1.4: Second-price Performance

Probability Review

- k th order statistic is k th largest value.
- order statistics denoted: $v_{(1)} \geq \cdots \geq v_{(n)}$
- expected order statistics of uniform variables evenly divide interval
- E.g., for $n=2, v_{1}, v_{2} \sim U[0,1], \mathbf{E}\left[v_{(1)}\right]=2 / 3$ and $\mathbf{E}\left[v_{(2)}\right]=1 / 3$.

Exercise 1.4: Second-price Performance

Probability Review

- k th order statistic is k th largest value.
- order statistics denoted: $v_{(1)} \geq \cdots \geq v_{(n)}$
- expected order statistics of uniform variables evenly divide interval
- E.g., for $n=2, v_{1}, v_{2} \sim U[0,1], \mathbf{E}\left[v_{(1)}\right]=2 / 3$ and $\mathbf{E}\left[v_{(2)}\right]=1 / 3$.

Exercise 1.4: Second-price Performance

Setup:

- single-item second-price auction
- two buyers, values $v_{1}, v_{2} \sim U[0,3]$

Question: Calculate expected revenue of seller and expected social welfare (i.e., expected value of winner).

Exercise 1.5: Two-day Gamble

Exercise 1.5: Two-day Gamble

Setup:

- $n=2$ prizes
- uniformly distributed $F_{1}=F_{2}=U[0,8]$
- realize first prize, claim it, or
- discard it and realize and claim second prize

Question: Find optimal strategy. What is its expected payoff? What is its probability of claiming first price?

