Probability Review

- The cumulative distribution function (cdf) of random variable X is $F_X(z) = \mathbf{P}r[X < z].$
- The probability density function (pdf) of X is $f_X(z) = \frac{d}{dz}F_X(z)$.
- The expected value of a random variable is $\mathbf{E}[X] = \int_{-\infty}^{\infty} z f_X(z) dz$.
- The uniform random variable $X \sim U[0, h]$ has cdf $F_X(z) = z/h$ and pdf $f_X(z) = 1/h$.

Exercise 1.3: Uniform Expectation

Calculate the expected value $\mathbf{E}[X]$ of uniform random variable $X \sim U[0, 1]$ (Answer on Canvas)

Teaching Assistants

Yiding Feng

Yingkai Li

- online markets combines:
 - online algorithm design
 - mechanism design
- Iectures:
 - algorithms/mechanisms and proofs.
 - goal: learn why markets work
- projects:
 - hands on experience.
 - goal: learn how theory applies.

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

- Syllabus on Canvas.
- Discussion on Piazza.
- Lecture videos (posted on Piazza)
- Office hours: TBA.
- Grading is Pass / Not Pass (university guidelines)
 - Lecture exercises (turn in on Canvas as "quizzes")
 - Projects, Project Reports (work in pairs)
 - Peer review (individually, on canvas)
 - Weekly quizzes.
- TBA: Midterm, Final.
- adjustments in consultation with student advisors

Last Time:

- example: ride sharing
- paradigms: algorithm design, online algorithms, mechanism design
- first-price auction, ascending auction, second-price auction

Last Time:

- example: ride sharing
- paradigms: algorithm design, online algorithms, mechanism design
- first-price auction, ascending auction, second-price auction

Today:

- second-price auction (cont)
- online allocation
- prophet inequality
- sequential pricing

Exercise 1.4: Second-price Performance

Probability Review

- *k*th order statistic is *k*th largest value.
- order statistics denoted: $v_{(1)} \geq \cdots \geq v_{(n)}$
- expected order statistics of uniform variables evenly divide interval
- E.g., for n = 2, $v_1, v_2 \sim U[0, 1]$, $\mathbf{E}[v_{(1)}] = 2/3$ and $\mathbf{E}[v_{(2)}] = 1/3$.

Probability Review

- *k*th order statistic is *k*th largest value.
- order statistics denoted: $v_{(1)} \geq \cdots \geq v_{(n)}$
- expected order statistics of uniform variables evenly divide interval
- E.g., for n = 2, $v_1, v_2 \sim U[0, 1]$, $\mathbf{E}[v_{(1)}] = 2/3$ and $\mathbf{E}[v_{(2)}] = 1/3$.

Exercise 1.4: Second-price Performance

Setup:

- single-item second-price auction
- two buyers, values $v_1, v_2 \sim U[0,3]$

Question: Calculate expected revenue of seller and expected social welfare (i.e., expected value of winner). (Answer on Canvas)

Exercise 1.5: Two-day Gamble

Setup:

- n = 2 prizes
- uniformly distributed $F_1 = F_2 = U[0, 8]$
- realize first prize, claim it, or
- discard it and realize and claim second prize

Question: Find optimal strategy. What is its expected payoff? What is its probability of claiming first price? (Answer on Canvas)